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Chapter 1

Introduction

1.1 Variability

Most of the natural phenomena we study are variable both in space and time.

Considering a topographic surface or a groundwater contamination one can ob-

serve high variability within small distances. The variability is a result of natural

processes, thus deterministic. As most of these processes are sensitive and the

conditions under which the they took place are not fully known, it is not possible

to describe them based on physical and chemical laws completely.

The practical consequences of variability are:

• field and laboratory measurements are necessary

• upscaling is non trivial

• there is always a limited degree of explanation one can achieve

1.2 Stochastic methods

It is not uncommon to use probabilistic and statistical methods for describing

partly known (or sampled) natural parameters. Philosophically the appropriate-
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ness of this approach can be argued. As the realization under study already exists

at the moment of the investigation, there is no randomness present in the sense of

the traditional approach.

On the other side, this kind of existence does not contradict the application

of probabilistic and statistical methods. For example, one faces the same kind

of uncertainty before tossing a coin and after it if the coin is covered immedi-

ately, before one can see it. The more disturbing and restricting problem is the

uniqueness of the realization. A coin can be tossed several times, but a natural

phenomenon cannot be repeated. This means that no frequencies are available,

and thus probabilities cannot be assessed this way.

Measurement values of a certain parameter, obtained from different locations

are often treated as different outcomes of the same random variable. Means and

variances, cumulative distributions etc. are calculated this way. However, the

hypothesis of independent trials is not always applicable. Consider the following

simple example.
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EXAMPLE 1.1 :

No.of samples Mean Variance

12 279.5 4554

21 283.9 7072

46 281.6 8646

Table 1.1: Means and variances calculated from different samples

Elevation of 46 meteorological stations was considered. As a first step mean

and variance corresponding to the central 12 stations were calculated. Then a bit

bigger neighbourhood was considered; finally all stations were included. Table

1.1 shows the means and variances. Note that the mean does not change, while

the variance increases with the sample size (proportional to the area covered by

these stations). If the parameter is modeled as the realization of a random variable,

then the usual assumption of independence would contradict the increase of the

variance.

1.3 Geostatistics

Time series analysis is one of the first fields where variability has been considered

and described with stochastic methods. These methods were extended and further

developed to analyse spatial variability. These spatial methods form the discipline

called geostatistics.

The word geostatisticsis formed from the two parts geo and statistics simi-

larly to geophysics or geochemistry. It is used with two different meanings:

1. as a collection of all statistical and probabilistic methods applied in geo

sciences,
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2. as an other name for the theory of regionalized variables.

The theory of regionalized variables, which is the topic of the next pages dates

back to the early fifties when in South-Africa D. Krige and his colleagues started

to apply statistical techniques to ore reserve estimation. In the sixties the french

matematician G. Matheron gave theoretical foundations to the above methods.

Geostatistics was first used by the mining industry, as high costs of drillings made

the analysis of the data extremely important. Books and publications on geostatis-

tics are mostly oriented to mining problems. As the computers got cheaper and

cheaper the computationally expensive methods could also be used in other topics.

Applications of geostatistics can be found in very different disciplines ranging

from the classical fields mining and geology to soil science, hydrology, meteorol-

ogy, environmental sciences, agriculture, even structural engineering.

The following text does not contain a complete theory of geostatistical meth-

ods illustrated with applications. It is planned to be a practical introduction. The-

oretical results and long derivations are not included, results are mostly presented

without detailed proofs. However, the ideas behind these results are always pre-

sented.

1.4 Notation

Throughout the following textu will always denote a point in thed dimensional

spaceu= x if d = 1,u= (x,y) if d = 2 andu= (x,y,w) if d = 3; if time also plays a

role it will be denoted byt. Measurement points are indexed,ui = (xi , . . .). Spaces

of different dimensionsd = 1, . . . ,3 will be considered, and the formulation is

given in a general form.

For simplicity the notation
∫

f (u)duwill be used for single, double, and triple
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integrals, too:

∫
f (u)du=



∫
f (x)dx if d = 1∫ ∫

f (x,y)dx dy if d = 2∫ ∫ ∫
f (x,y,w)dx dy dw if d = 3

(1.1)

Some double integrals can also appear in the text, they are meant to be double

integrals in the above (1.1) sense.
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Chapter 2

Statistical hypotheses

2.1 Basic concepts

Loosely speaking a random variable is a functionZ which might take different val-

ues (outcomes) with given probabilities. If the outcomes form a finite (or coutably

infinite) set then one speaks of a discrete random variable.

Random variables are characterized by their distribution function:

FZ(z) = P[Z ≤ z] (2.1)

Distribution functions are non-decreasing with values in[0,1]. The probability of

Z being in the interval[a,b] can be calculated using the distribution function:

P[a < Z ≤ b] = F(b)−F(a) (2.2)

For many non-discrete random variables the distribution functionF is con-

nected to the density functionf through:

FZ(z) =
z∫

−∞

fZ(t) dt (2.3)

The expected value of a random variable is its ’mean value over infinetely
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many realizations’. It is:

E[Z] =
+∞∫
−∞

t dFZ(t) (2.4)

For random variables with density function this can be written as:

E[Z] =
+∞∫
−∞

t fZ(t) dt (2.5)

Moments of a random variable are defined as:

E[Zm] =
+∞∫
−∞

tm dFZ(t) (2.6)

The central moments are:

E[(Z−E[Z])m] =
+∞∫
−∞

(t−E[Z])m dFZ(t) (2.7)

The second central moment is called variance:

Var[Z] = σ2 = E[(Z2−E[Z])2] (2.8)

The expected value has a linear behavior:

E[Z1 +Z2] = E[Z1]+E[Z2] (2.9)

and

E[aZ] = aE[Z] (2.10)

This is not true for the higher moments and in general for non-linear functionsg:

E[g(Z)] 6= g(E[Z]) (2.11)

The joint behavior of more random variablesZ1, . . . ,Zn can be described by

their joint distribution function:

FZ1,...,Zn(z1, . . . ,zn) = P[Z1 ≤ z1 and . . . andZn ≤ zn] (2.12)
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2.2 Regionalized variables

In the theory of regionalized variables the concept of random functions plays a

central role. Arandom functionis a set of random variables corresponding to the

points of the domainD under study. This means that for each pointu in D there is

a corresponding random variableZ(u).
A regionalized variableis the realization of a random function. This means

that for each pointu in the d dimensional space the value of the parameter we

are interested in,z(u) is one realization of the random functionZ(u). This inter-

pretation of the natural parameters acknowledges the fact that it is not possible

to describe them completely using deterministic methods only. In most cases it

is impossible to check the assumption that the parameter is the realization of a

random function as we have to deal with a single realization.

One could describe a random function by its multidimensional distribution

functions. This means that for each set of pointsu1, . . . ,un in the domainD, a

cumulative distribution functionFu1,...,un is assigned. Using these functions for

each set of possible valuesw1, . . . ,wn one could find the probabilityP :

P(Z(u1) < w1, . . . ,Z(un) < wn) = Fu1,...,un(w1, . . . ,wn) (2.13)

This would mean that conditional probabilities could be used for the estima-

tion of local or global averages etc. Unfortunately there are infinitely many finite

subsets in the domainD, and as for each point inD usually only one value (the

realization) is available the assessment of the distribution functions based on the

experimental data seems to be illusory. Even in the case of repeatedly measured

parameters (for example groundwater quality) there are not enough measurements

to assess the above distribution functions.

A general hypothesis which reduces the complexity of the problem is the so

called strong stationarity. Formally it is:

The random functionZ(u) is stationary if for each set of pointsu1, . . . ,un in the

domainD, and for each set of possible valuesw1, . . . ,wn, and for each vectorh:

P(Z(u1) < w1, . . . ,Z(un) < wn) = P(Z(u1+h) < w1, . . . ,Z(un+h) < wn) (2.14)
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This equation means that the distribution of the random function depends on the

configuration of the points and not on their locations. In other words this can be

formulated that “nature” repeats itself similarly for the same configuration.

The assumption of strong stationarity is useful, but still a bit too complex to be

appropriate. To deal with the problem effectively some even simpler assumptions

have to be made. The two basic and very similar assumptions are the following:

2.3 Second order stationarity

Stationarity is a concept often used in time series analysis. Here the second order

stationarity hypothesis is formulated for multidimensional spaces.

The assumption of second order stationarity consists of two conditions:

• The expected value of the random functionZ(u) is constant all over the

domainD.

• The covariance of two random variables corresponding to two locations de-

pends only on the vector h separating these two points.

These conditions can be formulated as:

E[Z(u)] = m (2.15)

for all u∈ D

E[(Z(u+h)−m)(Z(u)−m)] = C(h) (2.16)

for any u,u+ h ∈ D, whereC(h) depends only on the vectorh and not on the

locationsu andu+ h. The functionC(h) is calledcovariance function. In this

case one has forh = 0 :

C(0) = E[(Z(u)−m)(Z(u)−m)] = Var[Z(u)] (2.17)

Equation (2.17) shows that the random variables corresponding to different points

in the domain do not only have the same expectation, but they also have to have

the same finite variance. This second condition is not always met, but weaker

assumptions can be formulated.
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2.4 Intrinsic hypothesis

The assumption slighly weaker than the second order stationarity is the so called

intrinsic hypothesis. The first condition is the same as in the case of second order

stationarity, only the second is different:

• The expected value of the random functionZ(u) is constant all over the

domainD.

• The variance of the increment corresponding to two different locations de-

pends only on the vector separating them.

These conditions can be formulated as:

E[Z(u)] = m (2.18)

for all u∈ D

1
2
Var[Z(u+h)−Z(u)] =

1
2

E[(Z(u+h)−Z(u))2] = γ(h) (2.19)

whereγ(h) depends only on the vectorh and not on the locationsu andu+h. The

functionγ(h) is called semivariogram. The semivariogram is often called simply

variogram, for convenience this sloppy convention will be used throughout this

text. One can see that equation (2.19) is very similar to (2.16), but the implicit

assumption of the finite variance is not included. It can be demonstrated that the

second order stationarity implies the intrinsic hypothesis, but the converse is not

true. In the case of second order stationarity one has:

E[(Z(u+h)−Z(u))2] = E[((Z(u+h)−m)− (Z(u)−m))2] =

= Var[Z(u)]+Var[Z(u+h)]−2E[(Z(u+h)−m)(Z(u)−m)] = 2C(0)−2C(h)(2.20)

So the relation:

γ(h) = C(0)−C(h) (2.21)

Figure 2.1 shows this relationship between the covariance function and the vari-

ogram.
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Figure 2.1: The covariance functionC(h) and the variogramγ(h)

The intrinsic hypothesis was first considered by pioneers of geostatistics in

South Africa. The assumption of finite variances in gold deposits did not seem to

be suitable, this led to the introduction of this hypothesis.

2.5 Comparison of the two hypotheses

The difference between the intrinsic hypothesis and the second order stationarity

is not only the fact that the first is more general than the second. The covariance

function (2.16) is defined using the value of the expectationm, while the vari-

ogram (2.19) does not depend on this value. This is an advantage because slight

trends do not influence the variogram severely, in contrast to the covariance func-

tion where through the improper estimation of the mean these effects are more

severe.

16



2.6 Selection of the regionalized variable

The regionalized variable under study has to fulfill certain conditions to apply

geostatistical methods. These conditions are:

1. Data homogeneity: The data should reflect one parameter, measured by the

same measurement method, and the measurements should be made on the

same volume (support).

2. Additivity : The parameter should have the property that1
n ∑n

i=1Z(ui) has

the same meaning asZ(u).

To understand the meaning of the additivity condition consider the following ex-

ample:

EXAMPLE 2.1 :

Suppose thatZ(u) represents the thickness of a layer measured in m. If the

average thickness over a certain area is needed, then the arithmetic mean of a

regular sampling is a good estimator for this. If insteadZ′(u) is the cube of the

thickness then the arithmetic mean of the individualZ′(ui) values is not the cube

of the mean thickness. To see this explicitly suppose two samples are available:

Z(u1) = 1 andZ(u2) = 2. SoZ′(u1) = 1 andZ′(u2) = 8. Then for the mean one

has

0.5Z(u1)+0.5Z(u2) = 1.5

0.5Z′(u1)+0.5Z′(u2) = 4.5

but using the definition ofZ′(u) one has:

(0.5Z(u1)+0.5Z(u2))3 = 3.375

This means thatZ′(u) is not additive.

Some natural parameters are clearly non additive, like hydraulic conductivity

etc. In the case of non additive parameters it is possible to use transformations

17



which transform them to additive ones. Data homogeneity problems (like different

measurement types) can sometimes be overcome, some cases are discussed later.
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Chapter 3

The variogram

As the variogram is defined the variance of an increment certainly has to fulfil

several conditions. The precise conditions of a variogram will be discussed in the

section describing the theoretical variograms. Naturally there are also properties

of the variogram which we know or suppose without any precise mathematical

description.

• From the definition we haveγ(0) = 0 .

• From the definitionγ(h)≥ 0 for all h vectors

• From the definitionγ(h) = γ(−h) for all h vectors

• In most cases we suppose there is some kind of continuity in the parameter

we are dealing with. This means that the variance of the increments is

supposed to increase with the length of the vectorh.

• In several cases there is a certain limit in the continuity of the parameter.

This means that taking if the vector separating two points exceeds a certain

limit the variance of the increment will not increase any more.

• The variogram is often discontinuous near the origin. This means that for

anyh 6= 0 we haveγ(h)≥C0 > 0. This phenomenon is the so called nugget
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effect. The nugget effect can partly be explained by the measurement error

and partly by a random component in the parameter which is not spatially

dependent.

It is clear that the hypothesis about the existence of the variogram is the key

point of geostatistics. The first question naturally arising is: “Can I assume that

my parameter under study fulfils the intrinsic hypothesis ?”

Figure 3.1: Variogram cloud[mm2] (precipitation Jan.3, 1990)

Suppose that measurements of the parameter are taken at locationsui for

i = 1, . . . ,n. Let Z(ui) be the measured values. As a first step the impatient reader

would calculate the values(Z(ui)−Z(u j))2 for all the pairs formed from the mea-

surement pointsui , and would then plot them with respect to the distance (and

20



perhaps direction) separating the points. This way a so calledvariogram cloud

is obtained. Figure 3.1 shows such a variogram cloud. It seems to be a rather

discouraging result.

Figure 3.2: Experimental variogram[mm2] (precipitation Jan.3,1982)

However, the condition (2.19) did not promise that for all possible pairs the

value of(Z(ui)−Z(u j))2 will be close to a certain line. It is a statement on the ex-

pectation of these values. If we draw these expectations (calculated as arithmetic

means) for the same case as for which the variogram cloud was obtained (figure

3.1 ) the result is already promising as shown on figure 3.2 .
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3.1 The experimental variogram

The variogram function has to be estimated on the basis of the available data. In

the case of a finite data set the estimation of the variogram can be made for a finite

set of vectors only.

The variogram can be estimated with the help of the following formula:

γ∗(h) =
1

2N(h) ∑
ui−u j=h

(Z(ui)−Z(u j))2 (3.1)

HereN(h) is the number of pairs of locations separated by the vectorh.

The calculation of the above function, calledexperimental variogram is

straightforward in the case of regularly spaced data points. Even in this case

the experimental variogram is calculated for a finite number of vectors. If the

points are irregularly spaced the condition for the summationui −u j = h has to

be weakened, in order to have more pairs and not to obtain a variogram cloud as

above. This can be done by allowing a certain difference in both the angle and

the length of the vector. This means that the summation should be made over the

pairs fulfiling:

|ui −u j |− |h| ≤ ε

Angle(ui −u j ,h)≤ δ (3.2)

Here|.| denotes the length of a vector.

EXAMPLE 3.1 :

u 1 2 3 4 5 6 7 8 9 10

Z(u) 41.2 40.2 39.7 39.2 40.1 38.3 39.1 40.0 41.1 40.3

Table 3.1: Data points and values for example 3.1

Suppose all measurement points are alligned along the same straight line. (For

example data of the same borehole.) Also suppose that all the data points are
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equally spaced - two neighbouring data points are separated by the distance of 1

m. Using the data given in Table 3.1 one has:

γ∗(1) =
1
18

[(41.2−40.2)2 +(40.2−39.7)2 +(39.7−39.2)2 +(39.2−40.1)2 +

+(40.1−38.3)2 +(38.3−39.1)2 +(39.1−40.0)2 +(40.0−41.1)2 +(41.1−40.3)2] =

= 0.4917

and

γ∗(2) =
1
16

[(41.2−39.7)2 +(40.2−39.2)2 +(39.7−40.1)2 +(39.2−38.3)2 +

+(40.1−39.1)2 +(38.3−40.0)2 +(39.1−41.1)2 +(40.0−40.3)2] =

= 0.756

EXAMPLE 3.2 :

In this example data of a regular grid are considered with values missing at

certain locations. The configuration of the data and the values are showed on

figure 10.3.

The experimental variogram value corresponding to the direction of thex axis,

with the length of 25 m can be calculated as:

γ∗(25x) =
1
18

[(12−11)2 +(13−12)2 +(11−10)2 +(10−11)2 +(11−11)2

+(11−12)2 +(12−10)2 +(10−14)2 +(14−13)2] = 1.4444

From the same data in they direction one obtains :

γ∗(25y) =
1
18

[(10−11)2 +(12−11)2 +(11−11)2 +(10−10)2 +(10−10)2

+(11−13)2 +(13−13)2 +(13−11)2 +(11−12)2] = 0.6111

This example does not only show how the values of an experimental vari-

ogram are calculated, but also shows that the contribution of pairs with big dif-

ferences is very important. Excluding the data point with the value 14 one has
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Figure 3.3: Data configuration and values for example 3.2

γ∗(25x) = 0.643. If the number of pairs used for the calculation of the experimen-

tal variogram is large this unpleasent effect becomes less important.

3.1.1 Practice of experimental variogram calculation

Example showed that the estimation of an experimental variogram is very sensi-

tive to extreme values (extreme differences). From this it can be concluded that

in order to obtain a good estimate using (3.1) several pairs corresponding to the
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vetorh are required. In general it was suggested that at least 30 pairs are required

to get a more or less useful estimate.

Another practical problem is the selection of the vectors for which the exper-

imental variogram values are calculated. It is quite common to select a few (2 to

8) directions (possibly depending on the site) and a so called lag distance. Then

for each direction for multiples of the lag distance experimental variogram val-

ues are calculated (allowing a tolerance both in the direction and the distance, see

equation 3.2). Of course the more directions are selected the more data are re-

quired. The calculation of the experimental variogram thus often requires several

interactive steps, changing the direction tolerances and the lag distance.

Robust estimators of the experimental variogram

As example 3.2 already pointed out the experimental variogram is very sensitive

to extreme values. This is because of the very skewed distribution of the squares of

differences. Figure 3.4 shows the histogram of squared differences corresponding

to a distance class.

It is known from statistics that in the case of skewed distributions the arith-

metic mean is not the best estimator. Thus different estimators were also sug-

gested. One of them is the formula proposed by Cressie and Hawkins (1980)

γ∗(h) =
1
2

(
1

N(h) ∑
(i, j)∈R(h)

√
|Z(xi)−Z(x j)|

)4

(0.457+
0.494
N(h)

)−1 (3.3)

This formula, based on a power transformation makes the highly skewed raw

data look more similar to the normal distribution. The fourth power brings the

formula back to the proper scale and the divisor adjusts it for bias.

The other concept a of robust estimator of the empirical semivariogram is the

trimmed mean. The basic idea of using this estimator was to combine the advan-

tages of expressing the central tendency via mean and via median. A mean is a

good measure of central tendency if there are no extreme values in the data base.

However, the mean is very sensitive to outliers. On the other hand, the median
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Figure 3.4: Histogram of squared differences corresponding to distance class 32

km

is a robust estimator; not contaminated by the extreme observations at all. How-

ever, when evaluating the median, one goes too far in deleting observations, as

only one observed value is retained. This means that for skewed distributions,

the difference between the mean and the median are unacceptably high. Trimmed

mean is a natural trade-off combining the robustness of the median and the rep-

resentativeness of the mean. It is calculated as a mean of the reduced data set,

after elimination of some (e.g. 10 per cent) highest and some lowest observed

data values. Assume, that there aren values in the sample and that the trimming

is made by removingk highest andk lowest values. Then ifk/n = α < 0.5, then

the trimmed mean of valuesv1, . . . ,vn is:

Mα =
1

n−2k
[vk+1 + · · ·+vn−k] (3.4)

wheren is the number of data points, 2k is the number of eliminated data points
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(k highest andk lowest). This formula can be used for the determination of values

of experimental variogram in particular distance classes.

Classical Cressie Hawkins Trimmed mean

Distance Raw data With one Raw data With one Raw data With one

(km) outlier outlier outlier

1.0 128.3 128.3 49.6 49.6 33.0 33.0

2.0 294.2 9903.1 152.0 220.0 120.5 120.5

3.0 405.8 405.8 298.9 298.9 196.4 196.4

4.0 484.4 6523.4 307.0 374.4 243.1 243.1

5.0 349.1 13197.7 236.8 385.7 152.8 156.8

6.0 442.5 18273.1 256.2 455.9 184.3 184.3

7.0 344.4 4674.6 255.6 295.7 165.1 165.1

8.0 435.3 22363.6 313.0 618.7 212.5 212.5

9.0 424.6 12184.0 301.0 439.7 202.4 202.4

10.0 395.6 22347.6 251.3 525.5 168.5 168.5

Table 3.2: Experimental semivariograms for chloride concentration data

Table 3.2 shows the different effect of a single extreme value on the calcu-

lated experimental variogram (calculated from 108 chloride concentration mea-

surements). The observed value of 122 mg/l was changed to 1220 mg/l (a case

which can occur quite simply). Observe the reaction of the different estimators to

this single data change :

• the classical formula resulted in an unusable experimental curve
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• the Cressie Hawkins formula shows some disturbances but seems still us-

able

• the trimmed mean shows virtually no effects at all.

3.2 The theoretical variogram

Experimental variograms are estimates of the theoretical variogram defined in

equation (2.19). As experimental variograms are calculated for a finite number

of vectorsh, variogram values for other vectors also have to be defined. This

could be done by simple linear interpolation. The disadvantage of this would be

that the piecewise linear function obtained this way would not necessarily satisfy

the conditions which have to hold for a variogram function defined in (2.19).

For example for any linear combination∑n
i=1θiZ(ui), such that∑n

i=1θi = 0,

the variance of this combination is finite,1 and can be calculated as:

Var[
n

∑
i=1

θiZ(ui)] =−
n

∑
j=1

n

∑
i=1

θ jθiγ(ui −u j) (3.5)

As the variance cannot be negative the above equation already gives a neces-

sary condition for the variogram, i.e. that for any weightsθi with ∑n
i=1θi = 0

−
n

∑
j=1

n

∑
i=1

θ jθiγ(ui −u j)≥ 0 (3.6)

It can be proved that this condition is also sufficient. Unfortunately the above

inequality can only be checked for a finite number ofui and θi combinations.

In order to relate experimental variograms to functions suitable as variograms

different theoretical models were developed. These models depending whether

the second order stationarity conditions hold or not form two groups.

1It can be proved that only linear combinations∑n
i=1 θiZ(ui) such that∑n

i=1 θi = 0 have a finite

variance under the intrinsic hypothesis.
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If the second order stationarity conditions are met then supposing that for very

distant points the corresponding random variables are independent, one gets var-

iograms which are constant after a certain distance. This is because ifZ(u) and

Z(u+h) are independent, thenC(h) = 0 and so by (2.21) one has

γ(h) = C(0) (3.7)

Variograms with this property are called variograms with a sill.

If the second order stationarity is not met (i.e.C(0) is not finite) but the intrin-

sic hypothesis is true then we get variogram models without a sill.

Finally positive linear combinations of the previous variogram models also

fulfil the necessary and sufficient conditions for a function to be a variogram.

These are the so called complex models.

3.2.1 Variogram models with a sill

There are four commonly used elementary types of variograms with a sill. Positive

linear combinations of these models are also variograms with a sill.

The pure nugget effect

The pure nugget effect corresponds to the case when there is no correlation be-

tween the random variables corresponding to different locations. This means that

the value of the variogram is zero ifh is zero, otherwise it is equal to the same

constant which isC(0) the variance of the random variable. The formula is:

γ(h) = 0 if h = 0

γ(h) = C if h > 0 (3.8)

Figure 3.5 shows the graph of a pure nugget effect variogram.
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The spherical variogram

This is the most commonly used type of variogram. It can be described by two

parameters, the range and the sill. The rangea is the distance which separates

the correlated and the uncorrelated random variables. If two pointsu′ and u′′

are separated by a distance bigger than this range then the corresponding random

variablesZ(u′) andZ(u′′) are independent. Conversely if their distance is less

than the range thenZ(u′) andZ(u′′) are not independent. The value of the sillC is

the value of the variogram for distances bigger than the range. It is equal toC(0),
the variance of the random variable. This impliesC > 0. The formula is:

γ(h) = C(
3
2

h
a
− 1

2
h3

a3) if h≤ a

γ(h) = C if h > a (3.9)

Figure 3.6 shows the graph of a spherical variogram.

The exponential variogram

As the spherical variogram the exponential variogram is also described with the

help of two parameters. One of them is the sill, which equalsC(0) as for the
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Figure 3.6: The spherical variogram

spherical variogram. The other parameter corresponds again to the change of

variogram values with respect to the distance. In this case there is no special

distance separating the correlated and the uncorrelated random variables as in

the spherical case. All random variables are supposed to be non independent.

However there is an effective range 3a such that random variables corresponding

to points more distant than 3a can be considered as independent. The formula is:

γ(h) = C(1−e−
h
a) (3.10)

HereC is nonnegative. Figure 3.7 shows the graph of an exponential variogram.

The gaussian variogram

The gaussian variogram is also characterized by two parameters. The sillC is

again equal toC(0), the variance of the random variable. The parametera is again

related to the effective range of the variogram. As in the case of the exponen-

tial variogram there is no theoretical limit between correlated and non correlated

random variables. The effective range in this case is
√

3a. The formula is:

γ(h) = C(1−e−
h2

a2 ) (3.11)
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Figure 3.7: The exponential variogram

C is positive. Figure 3.8 shows the graph of a gaussian variogram.

Note the difference between the gaussian and the exponential and spherical

variograms in the neighbourhood of the origin. The exponential and the spherical

variograms show a linear increase, while the increase of the gaussian is much

smoother - showing a quadratic type of behavoir near 0.

3.2.2 Variogram models without sill

If the regionalized variable does not fulfil the second order stationarity hypothesis

but is intrinsic, then its variogram can show an unlimited increase.

Modelshλ

The function defined as:

γ(h) = Chλ for 0 < λ < 2 (3.12)

represents a valid variogram model. The caseλ = 1 is the linear variogram, and

it is quite often used in geostatistics. Figure 3.9 showshλ models for differentλ
values.
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Figure 3.8: The gaussian variogram

Complex models

All previously listed variogram models satisfy (3.6). Unfortunately these models

can not always describe the variability of the regionalized variable under study.

Combinations of the previous models enrich the set of theoretical variograms.

It can be shown that ifγ1(h), . . . ,γK(h) are all variogram models satisfying

(3.6) andc1, . . . ,cK are nonnegative numbers then:

γ(h) =
K

∑
k=1

ckγk(h) (3.13)

is also a function satisfying (3.6), and thus an appropriate variogram model. For-

mula (3.13) makes it possible to combine models of different range describing the

different types of variability of the regionalized variable. The most commonly

used complex models are the combinations of a nugget effect and a simple model

(like spherical).

Complex models also occur in the case when the variogram of a linear combi-

nation of regionalized variables is calculated. SupposeZi(u) andZ j(v) are inde-
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Figure 3.9: Thehλ variograms

pendent fori 6= j. Then for defining:

Z(u) =
I

∑
i=1

ciZi(u) (3.14)

the variogram for Z can be calculated with the help of the variograms of theZi-s.

Namely:

γ(h) = E

[
(

I

∑
i=1

biZi(u+h)−
I

∑
i=1

biZi(u))2

]
=

= E

[
I

∑
i=1

bi(Zi(u+h)−Zi(u))2

]
=

I

∑
i=1

b2
i γi(h) (3.15)

Hereγi(h) is the variogram forZi .

This formula can be useful for certain non natural variables, like for example

if the value of an ore is proportional to its contents of some of its components.

3.3 Variogram fitting

On the previous pages several methods and practical remarks were given for the

calculation of experimental variograms. As pointed out these curves do not satisfy
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the statistical properties of a variogram. Thus a theoretical curve has to be fitted to

the experimental one. The previous section described several possible theoretical

models, the next step is the procedure of fitting one of them to the experimental.

There are several different approaches to do this. First we have to mention

that theoretical studies yielded the conclusion that the values of an experimental

variogram corresponding to distant pairs are unreliable. It turned out that only

the first few values can be used for finding a theoretical fit. As a rule of thumb

variogram values corresponding to distances greater then the half of the greatest

distance between two points in D are not considered for further use.

The most common method for fitting a variogram is doing it ”by eye”. This

means that one plots the useful part of the experimental variogram and then tries

to find a linear combination of theoretical models (i.e. a complex model) which

produces a graph close to the experimental one. The disadvantage of this method

is clear - it is not statistically justified and different experts can fit different theoret-

ical models to the same experimental variogram. However, the great advantage of

this method is that plotting the experimental curve one can detect many problems

of the data set and the calculations. Extremely high or low variogram values must

have reasons to be so and can be traced back. Errors of the data set (e.g. mistyp-

ing) can often be detected this way. Also the intrinsic hypothesis can partly be

checked by looking at the experimental variogram. Curves increasing in certain

directions and steady in others often indicate the existence of trends. Inhomo-

geneities of the data set can also cause problems and be detected this way. Also

the correct selection of the lag and the tolerance values can be checked this way.

Engineering and geological information can be used in this procedure by implicit

weighting of the variogram values.

There are authors who suggest that the theoretical variogram should be fitted

by a standard least squares approach. There are several problems with this ap-

proach: The method is ”blind”, the previously mentioned errors cannot be found.

Another disadvantage is that this method assumes that the errors (the deviation

of the theoretical from the experimental) are supposed to be independent. This
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Figure 3.10: Experimental variogram with an easy fit

assumption is generally not met.

Other methods like the maximum likelihood fit were also developed. Using a

maximum likelihood method one has to postulate distributions for different dis-

tance classes. These distributions are to describe the deviations of the square of

the difference of two parameter values from the theoretical model. For each pair

a probability depending on the parameter values can be calculated. The maxi-

mum likelihood estimator is that parameter combination which yields the highest

product of these probabilities. This estimator is also ”blind” as the least squares

method. It also supposes independence between the different squares correspond-

ing to different data pairs - which is generally not met.
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Figure 3.11: Experimental variogram with a difficult fit

Figure 3.10 shows an “easy” by eye fit, figure 3.11 shows a “difficult” case.

3.4 Isotropy — anisotropy

The random function is calledisotropic if its variogram depends only on the

length of the vectorh. In this case the experimental variogram can be calculated

with the only limiting condition|ui −u j |= |h|.
Isotropy of a random function can partly be checked if there is a sufficient

amount of ”well spaced” (for example not alligned) data. In this case experimental

variograms corresponding to different directions can be calculated and compared.
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However, in many cases especially in the case of small data sets this assumption

has to be made in order to have enough data for each selected class. If a random

function is not isotropic, then it can show different types of anisotropy.

3.4.1 Geometric anisotropy

The regionalized variable has a geometric anisotropy if there is a coordinate trans-

formationT such thatZ(u′) = Z(Tu) is isotropic. This means that for geometric

anisotropy a simple transformation of the coordinates leads to a case where only

distances (in the new coordinate system) play a role.

The natural question arises: how does one find such a transformation? The

existence of such a transformation implies that the value of the sill (if there is any)

is the same for each direction. Ranges corresponding to different directions can

then be plotted. If these ranges fall on an ellipse, then a rotation and a subsequent

shrinking will be the appropriate transformationT. The corresponding geometric

transformation is described with two parameters:

ϕ= the angle between the x coordinate and the main axes of the anisotropy (el-

lipse)

λ= the ratio of the two orthogonal ranges representing the highest and the lowest

variability

The corresponding transformation has the mathematical form:

x′ = λ(xcosϕ+ysinϕ)

y′ =−xsinϕ+ycosϕ (3.16)

with (x,y) being the coordinates in the original and(x′,y′) those in the transformed

system. Calculations then can be carried out in the transformed system as in the

isotropic case.

In three dimensions the ellipse is replaced by an ellipsoid. In practice the

variability in the vertical direction is much higher then in horizontal directions,

leading to a strong anisoptropy.
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3.4.2 Zonal anisotropy

If the ranges do not fall on an ellipse, or even the sill values are different then it

is a zonal anisotropy. In the case of a zonal anisotropy a complex model has

to be fitted. The individual terms of the complex model show different geometric

anisotropies, and some of them might change in only one direction.
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Chapter 4

Ordinary Kriging

Variograms provide a lot of information about the parameter under study, but es-

sentially they are tools for other geostatistical calculations. One of the possible

(and perhaps the most important) use of variograms is in the estimation of pa-

rameter values at unsampled locations, and/or the estimation of the average of the

parameter over a certain area. The simplest geostatistical procedure doing this is

ordinary kriging. Ordinary kriging is the procedure which is most widely known

(and often labeled by the single word kriging).

4.1 Point kriging

One of the most common interpolation (and extrapolation) problems is the esti-

mation of a parameter at unsampled locationu. In the framework of regionalized

variables this can be done with the help of the procedure labeled point kriging.

A linear estimator, i.e. a linear combination of the values of the regionalized

variable at known locations, is to be found. This means that the estimator is of the

form:

Z∗(u) =
n

∑
i=1

λiZ(ui) (4.1)

There are infinitely many possible choices for the weightsλi . It is desirable to
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select them in order to have an unbiased estimator which also has the smallest

possible estimation variance. Using the second order stationarity or the intrinsic

hypothesis one has:

E[Z(u)] = m for all u∈ D (4.2)

This means for the linear estimator

E[Z∗(u)] =
n

∑
i=1

λiE[Z(ui)] = m (4.3)

so the weights have to fulfil:
n

∑
i=1

λi = 1 (4.4)

This is the so called unbiasedness condition. Using the second order stationarity

hypothesis the estimation variance can be calculated with the help of the covari-

ance functionC(h) as:

σ2(u) = Var[Z(u)−Z∗(u)] = E

[
(Z(u)−

n

∑
i=1

λiZ(ui))2

]
=

= E

[
Z(u)2 +

n

∑
i=1

n

∑
j=1

λiλ jZ(ui)Z(u j)−2
n

∑
i=1

λiZ(ui)Z(u)

]
=

= C(0)+
n

∑
j=1

n

∑
i=1

λ jλiC(ui −u j)−2
n

∑
i=1

λiC(ui −u) (4.5)

The estimation variance is a quadratic function of the weightsλi . The best linear

unbiased estimator (BLUE) is the one which minimizes the estimation variance

with respect to the unbiasedness condition. This constrained optimization prob-

lem can be solved with the help of a Lagrange multiplierµ. The function

σ2(u)−2µ

(
n

∑
i=1

λi −1

)
(4.6)

is to be minimized. Using the partial derivatives with respect to the unknown

parametersλi andµ one has to solve the linear equation system:
n

∑
j=1

λ jC(ui −u j)−µ = C(ui −u) i = 1, . . . ,n
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n

∑
j=1

λ j = 1 (4.7)

Solving (4.7) yields the weightsλi for the linear estimator. The equation system

(4.7) is called kriging system in terms of covariances.

If the intrinsic hypothesis is used the estimation variance can be expressed

with the help of the variogram:

σ2(u) = Var[Z(u)−Z∗(u)] =−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui −u) (4.8)

The goal is to minimizeσ2(u) under the unbiasedness conditions. This optimiza-

tion problem can also be solved with the help of a linear equation system. Intro-

ducing the Lagrange multiplierµ the weights that minimizeσ2(u) are the solution

of:
n

∑
j=1

λ jγ(ui −u j)+µ = γ(ui −u) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.9)

The above equation system is called kriging system, the weightsλi are the kriging

weights. The minimal estimation variance can be obtained by substituting the

kriging weights into (4.8). This variance is called kriging varianceσ2
K(u). It can

be proved that :

σ2
K(u) =

n

∑
i=1

λiγ(ui −u)+µ (4.10)

This equation is of no theoretical interest, but it simplifies the calculation of the

estimation variance.

EXAMPLE 4.1 :

Suppose that using two points on a straight line the value at a third point is

to be estimated. The points areu1 = 1 andu2 = −2. The point for which the

estimation is to be done isu = 0. Figure 4.1 shows the configuration. Let the
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measurement values beZ(u1) = 2 andZ(u2) = 4. Suppose the variogram is linear

γ(h) = h.

u2 u u1

Figure 4.1: Data configuration for example 4.1

The kriging equations are:

0λ1 +3λ2 +µ = 1

3λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.11)

From this one hasλ1 = 0.6667,λ2 = 0.3333 andµ = 0. Thusσ2 = 1.3333 and

Z∗(u) = 2.6667. It is clear that kriging yielded the same weights as linear inter-

polation or inverse distance method.

Suppose the configuration is changed andu2 is moved to the other side of the

origin: u2 = 2. Figure 4.2 shows the modified configuration.

u u1 u2

Figure 4.2: Modified data configuration for example 4.1

The kriging equations are:

0λ1 +1λ2 +µ = 1
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1λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.12)

From this one hasλ1 = 1.0, λ2 = 0.0 andµ= 1.0. Thusσ2 = 2.0 andZ∗(u) = 2.0.

The result is different from the previous, but it would not be different in the case

of the inverse distance method. This example demonstrates that the data configu-

ration plays an important role in kriging. The increased estimation variance shows

that the extrapolation in the second case is more uncertain than the interpolation

in the first.

4.2 Block kriging

Quite often applications require average values of the parameter over certain areas,

instead of point values. These averages could be calculated using point kriging for

a great number of points in the area and taking their average. A simpler way of

doing this is using block kriging.

Suppose the average of the parameter over a volumeV (block) in the domain

D is to be estimated.

Z(V) =
1
|V|

∫
∨

Z(u)du (4.13)

Again a linear estimator of the form :

Z∗(V) =
n

∑
i=1

λiZ(ui) (4.14)

is to be found. The unbiasedness condition leads again to:

n

∑
i=1

λi = 1 (4.15)

The estimation variance in this case is:

σ2(V) = Var[Z(V)−Z∗(V)] =−γ(V,V)−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui ,V)

(4.16)
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hereγ is the average variogram value:

γ(ui ,V) =
1
|V|

∫
∨

γ(ui −u) du (4.17)

γ(V,V) =
1
|V|

∫
∨

∫
∨

γ(u−v)dudv (4.18)

The minimization ofσ2(V) under the unbiasedness condition leads to the linear

equation system:
n

∑
j=1

λ jγ(ui −u j)+µ = γ(ui ,V) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.19)

EXAMPLE 4.2 :

Suppose that for the same configuration as in the first part of example 4.1

instead of pointu = 0 the average over the interval[−0.5,0.5] is to be found.

Block kriging is applied for the estimation. The left hand side of the equation

system is identical to the point kriging case. The right hand side is:

γ(u1,V) =
∫ +0.5

−0.5
|t−1|dt = 1

γ(u2,V) =
∫ +0.5

−0.5
|t +2|dt = 2

Thus the kriging equations are again:

0λ1 +3λ2 +µ = 1

3λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.20)

From this one hasλ1 = 0.6667,λ2 = 0.3333 andµ= 0. To calculate the estimation

variance one also needs the value ofγ(V,V). This is:

γ(V,V) =
∫ +0.5

−0.5

∫ +0.5

−0.5
|t−s|dt ds= 2

∫ +0.5

−0.5

∫ s

−0.5
s− t dt ds=

1
3
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Thusσ2 = 1.000 andZ∗(V) = 2.6667. For this case block kriging yielded the

same weights as point kriging, but the estimation variance is smaller using block

kriging. (The weights calculated for the center of a block using point kriging are

not necessarily equal to the weights corresponding to the block !)

4.3 Properties of ordinary kriging

The kriging estimator has several interesting partly advantageous and partly dis-

advantageous properties. First some general properties are listed, then the rela-

tionship between kriging and the variogram is investigated.

4.3.1 Kriging as an interpolator

Kriging is an interpolation (and extrapolation) technique. Important properties of

the kriging interpolator are:

1. Kriging is an exact interpolator: for each observation pointui Z(ui) =
Z∗(ui), and the corresponding estimation variance is zero. This is because

takingλi = 1 andλ j = 0 if i 6= j the kriging equations are satisfied.

2. Kriging weights are calculated with the help of the variogram and the lo-

cations of the measurement points and the point to be estimated. Not only

distances between measurement points and the point to be estimated are

considered but also the relative position of the measurement points.

3. Kriging weights sum up to 1, but they can also be negative. Thus the usual

hypothesis

max{Z(ui)} ≤ Z∗(u)≤ min{Z(ui)}

is not true.

4. Kriging weights are not influenced by the measurement values. If the same

configuration appears at two different locations the kriging weights will be
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the same, independently from the measured values. The measured values

influence the variogramm which is the basis for the calculation of the krig-

ing weights.

5. Kriging weights show a screening effect, distant points receive lower weights

if closer measurements are available. This effect is demonstrated in example

4.3.
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EXAMPLE 4.3 :

s1 s2

s3s4

s5

s6

d

Figure 4.3: Data configuration for example 4.3

Suppose the value of the regionalized variable has to be estimated at the point

(0,0) with the help of a subset of the points listed in table 4.1. The configuration

is also displayed on figure 4.3. The variogram is known :

γ(h) = C0 +C1γS(h) for h > 0 (4.21)

whereγS(h) is a spherical model with a rangea = 10. C0 = 0.05 is the nugget

effect andC1 = 0.20.

Three different cases are considered:

1. kriging using points 1,2,3 and 4

2. kriging using points 1,2,3,4 and 5
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No. x y

1 -1.00 -1.00

2 1.00 -1.00

3 2.00 2.00

4 -1.00 2.00

5 1.00 1.00

6 -1.10 1.90

Table 4.1: Different possible measurement locations

3. kriging using points 1,2,3,4 and 6.

Weights calculated for each case are shown in table 4.2.

Comparing case 1 and case 2 one can see that the weight corresponding to

point 3 decreased substantially because of the inclusion of point 5. The other

weights did not change drastically.

In case 3 part of the weight associated to point 4 was shifted to point 6, the

other weights were much less influenced.

These two examples show that kriging filters out the useful information and

assigns less weight to points which are close to other points or which are screened

by other points.

4.3.2 Kriging and the variogram

As the estimation variance is calculated with the help of the variogram, and the

kriging equations also contain variogram values it is obvious that the variogram

plays a central role in kriging.

Using the variogram kriging delivers not only estimated values but also pro-
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Weights

Point Case 1 Case 2 Case 3

1 0.322 0.294 0.304

2 0.317 0.255 0.311

3 0.144 0.047 0.130

4 0.217 0.163 0.123

5 — 0.240 —

6 — — 0.132

Table 4.2: Kriging weights for the three different cases

vides corresponding estimation variances. (Unfortunately these weights only de-

pend on the data configuration and the variogram but not on the actual data val-

ues.) These estimation variances express the quality of the interpolation, high es-

timation variance means uncertain interpolation — low estimation variance shows

good interpolation. Estimation variances are often used as normal error variances.

As mentioned previously the estimation variance is zero if the parameter is

to be estimated at a measurement point location. In the neighbourhood the es-

timation variance is low (depending on the variogram) and as the distance from

measurement points increases so does the estimation variance. Points (or blocks)

with high estimation variances indicate areas where the estimation is uncertain.

Comparing estimation variances obtained using point and block kriging one

can see that the latter are substantially smaller. This is because of the additional

termγ(V,V) for the block variances. Asγ(V,V) increases with the block dimen-

sions the estimation variance decreases. This fact is in full agreement with the fact

known from statistics, that a mean can be estimated with much higher accuracy

than an individual value.
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EXAMPLE 4.4 :

To show the role of the nugget effect consider the data of example 4.3. Three

different variogram models were used to calculate the kriging weights.

γ(h) = C0 +C1γS(h) for h > 0 (4.22)

whereγS(h) is a spherical model with a rangea = 10. Forγ1 C0 = 0.05 is the

nugget effect andC1 = 0.20. Forγ2 C0 = 0.20 is the nugget effect andC1 = 0.05.

For γ3 C0 = 0.0 is the nugget effect andC1 = 0.25.

Weights

Point γ1 γ2 γ3

1 0.322 0.265 0.341

2 0.317 0.262 0.352

3 0.144 0.230 0.098

4 0.217 0.243 0.210

Table 4.3: Kriging weights for the three different variograms

Kriging weights for the three different models are shown in table 4.3. Note

that for γ2, where the nugget value is increased, the weights are almost equal.

The highest weight differences are for the case ofγ3, where there is no nugget

effect. This example shows that a high nugget effect leads to estimators around

the sample mean.

If the variogramγ(h) is replaced by its constant multiplecγ(h) then the kriging

weights do not change. This is a consequence of (4.8), as the estimation variance

is also multipled by the same constant, thus the minimum variance is realized

using the same weights.
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If γ(h) is replaced by another variogram which is close to it, then the kriging

weights do not change substantially. Unfortunately the possible changes depend

both on the configuration of the data points and the actual data values.

4.4 Practice of kriging

4.4.1 Selection of the neighbourhood

As example 4.3 already demonstrated the screening property of kriging leads to

small weights for distant samples. On the other hand the intrinsic hypothesis

is supposed to hold locally within a certain distance. These two facts and the

numerical efficiency of the solution imply that only the closest few samples should

be used in kriging.

Usually the points used for the kriging of a point or block are selected within a

certain distance (usually around the range) with taking into account the anisotropy.

If there are still too many points in such a neighbourhood the closestn are taken,

wheren is a prescribed limit.

It is important to notice that the above procedure fails to work properly if the

points are very irregularly spaced. In such a case different criteria have to be

given. (for example directional search)

In three dimensions when the number of points is too high a regrouping of the

points into blocks and then kriging from these blocks can reduce the computations.

4.4.2 Kriging with a “false” variogram

Kriging is sometimes used also without the calculation of an experimental vari-

ogram, but only assuming a theoretical model. As mentioned above the selection

of the variogram parameters can influence the kriging results. Usually a complex

model of two elements a nugget effect and a simple model (spherical, exponen-

tial, gaussian or linear) is assumed. As the multiplication of the variogram by a
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constant does not influence the kriging results, the most important factor in this

case is the relative nugget effect (= sill divided by the nugget effect).

In any case an interpolator having the above mentioned properties is used. The

estimation variances calculated without a proper variogram will be meaningless.

4.5 Cross validation

As previously mentioned the uniqueness of the realization makes the use of sta-

tistical test in geostatistics quite difficult. However, the subjective “by eye” fit

of theoretical variograms should be checked somehow to reduce its effects. One

possible way of doing this is the so called “cross validation”. This procedure tests

the variogram by a procedure where it is most often used, namely the kriging

procedure.

For each measurement locationui the values are estimated (using kriging) as if

they were unknown. This estimator is now denoted byZv(ui) and the correspond-

ing kriging standard deviation isσv(ui). Then the estimated values are compared

with the true valuesZ(ui). If the kriging standard deviation can be interpreted as

an estimation error with normal distribution then

S(ui) =
Zv(ui)−Z(ui)

σv(ui)
(4.23)

should be normally distributed with 0 mean and 1 as standard deviation (N(0,1)).
The mean indicates whether the estimator is unbiased or not, the variance ofS

indicates the correctness of the kriging standard deviations.

The calculation of theS(ui) values with the fitted variogram is the first test

of the appropriateness of the fit. If the distribution is different fromN(0,1) then

variation of the coefficients can improve the fit.

Cross validation techniques can be used to detect outliers of the measurement

values.
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4.6 Kriging with uncertain data

It is quite often the case that the same parameter is measured or estimated with

the help of different methods. If these methods yield different accuracies the

corresponding measurement values should also be handled differently.

Suppose that for each pointui there is an unknown error termε(ui) having the

following properties:

1. Unbiased :

E[ε(ui)] = 0 (4.24)

2. Uncorrelated :

E[ε(ui)ε(u j)] = 0 if i 6= j (4.25)

3. Uncorrelated with the parameter value:

E[ε(ui)Z(ui)] = 0 (4.26)

For convenience the estimation for a blockV is given here, but the same applies

for point values, too. The linear estimator in this case is:

Z∗(V) =
n

∑
i=1

λi (Z(ui)+ ε(ui)) (4.27)

The unbiasedness condition has to hold as in the case of ordinary kriging. So :

n

∑
i=1

λi = 1 (4.28)

The estimation variance is:

Var[Z(V)−Z∗(V)]=−γ(V,V)−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui−u j)+2
n

∑
i=1

λiγ(ui ,V)+
n

∑
i=1

λ2
i E[ε(ui)2]

(4.29)
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To minimize the estimation variance an equation system similar to the ordinary

kriging system has to be solved. Namely:

n

∑
j=1

λ jγ(ui −u j)+λiE[ε(ui)2]+µ = γ(ui ,V) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.30)

To illustrate the above methodology consider the following example:

EXAMPLE 4.5 :

Hydraulic conductivity is measured with different methods:

1. Direct measurements

2. Gravimetric measurements

3. Nuclear measurements

In the case of gravimetric and nuclear measurements the logarithm of the hy-

draulic conductivity is estimated from the measured water content and the dry

density with the help of a nonlinear regression. The regression error for gravimet-

ric measurements isD[εG] = 0.30997, for nuclear measurementsD[εN] = 0.32828.

The measurement data are listed in table 4.4. The average logK value of the

square blockV with opposite corner coordinates (0,0) and (3,3) is to be estimated.

Figure 4.4 shows the data configuration.

The variogram of logK was estimated on the basis of other measurement data,

and a theoretical model was fitted:

γ(h) = C0 +C1γS(h) for h > 0 (4.31)

whereγS(h) is a spherical model with a rangea = 6 m. C0 = 0.05 is the nugget
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No. x y log K Measurement type

1 -1.00 -1.00 -7.07 Direct

2 4.00 1.50 -7.89 Direct

3 -1.00 1.50 -6.41 Gravimetric

4 4.00 -1.00 -6.84 Gravimetric

5 4.00 4.00 -7.69 Nuclear

6 1.50 -1.00 -7.94 Nuclear

Table 4.4: Different logK measurement data

effect andC1 = 0.15. The equation system (4.30) for this case is:

+ 0.199λ2 + 0.138λ3 + 0.194λ4 + 0.200λ5 + 0.138λ6 + µ = 0.167

0.199λ1 + + 0.194λ3 + 0.138λ4 + 0.138λ5 + 0.167λ6 + µ = 0.141

0.138λ1 + 0.194λ2 − 0.096λ3 + 0.199λ4 + 0.199λ5 + 0.167λ6 + µ = 0.141

0.194λ1 + 0.138λ2 + 0.199λ3 − 0.096λ4 + 0.194λ5 + 0.138λ6 + µ = 0.167

0.200λ1 + 0.138λ2 + 0.199λ3 + 0.194λ4 − 0.108λ5 + 0.199λ6 + µ = 0.167

0.138λ1 + 0.167λ2 + 0.167λ3 + 0.138λ4 + 0.199λ5 − 0.108λ6 + µ = 0.141

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + = 1

The solution of the equation system is shown in table 4.5. The value ofγ(V,V) is

0.1003, the estimation variance is 0.0778 and the estimated logK value is -7.36.

In the case of ordinary kriging without error terms the kriging equations would

be the same except the main diagonal being zero. The solution in this case is can

also be found in table 4.5.
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c1

c2s3

s4

5

6

V

Figure 4.4: Data configuration for example 4.5

Note that observations 2,3, and 6 have similar weights as they are the closest

observations to the block to be estimated. Weights for the direct measurements

decreased, as all measurements are handled equally in this case.
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Weights Kriging with Point kriging

uncertainty

λ1 0.147 0.042

λ2 0.303 0.252

λ3 0.210 0.294

λ4 0.077 0.051

λ5 0.108 0.126

λ6 0.155 0.235

µ 0.020 0.009

Table 4.5: Weight calculated using uncertain and exact data
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4.7 Simple Kriging

The Ordinary Kriging procedure is based on the assumption that the expected

value of the underlying process is the same over the domain under study. The

knowledge of this constant was not neccessary. Simple kriging is an alternative to

OK supposing the meanm(u) is known (not neccessarily constant) in the whole

domain. In this case the estimator: Again a linear estimator of the form :

Z∗(u) = m(u)+
n

∑
i=1

λi(Z(ui)−m(ui)) (4.32)

is to be found. The unbiasedness condition means in this case:

E[Z∗(u)−Z(u)] = m(u)+
n

∑
i=1

λiE[Z(ui)−m(ui)]−m(u) = 0 (4.33)

This condition does not imply any additional constraints. The variance of the

estimator is expressed using the covariance functionC:

Var[Z∗(u)−Z(u)] = E[Z∗(u)2 +Z(u)2−2Z∗(u)Z(u)] =

n

∑
i=1

n

∑
j=1

λiλ jC(ui −u j)+C(0)−2
n

∑
i=1

λiC(ui −u) (4.34)

The estimation variance is minimal if:

∂Var[Z∗(u)−Z(u)]
∂λi

= 0 (4.35)

This leads to the simple kriging equation system:

n

∑
j=1

λ jC(ui −u j) = C(ui −u) (4.36)
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Chapter 5

Non stationary methods

Unfortunately many natural parameters do not fulfil the intrinsic hypothesis, be-

cause of a known systematic change in the parameter value. For example ground-

water head is a parameter which usually has a systematic drift, and thus should

not be investigated with stationary methods. Systematic changes contaminate the

experimental variogram and lead to unacceptable results. Some known methods

are presented in this chapter to deal with this problem.

Suppose that the first assumption of the intrinsic hypothesis is not met. Namely

instead of a constant expectation there is a drift present. It is supposed the the dif-

ference between the regionalized variable and the drift is intrinsic. Formally:

Z(u) = f (u)+Y(u) (5.1)

whereY(u) is intrinsic andE[Y(u)] = 0.

The most common method for estimating a drift is the use of least squares

trend fitting. The assumption for fitting is that the residuals are independent. This

contradicts the basic hypothesis, namely that a the regionalized variable is the

sum of a deterministic drift and an intrinsic residual. (It would be true only if the

residual had a pure nugget effect variogram.)

In order to deal with the drift four different methods could have been used.

• Universal kriging
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• Intrinsic random functions of order k (IRF-k)

• Residual kriging

• External Drift Kriging.

A main difference between these methods is that universal kriging and residual

kriging are based on a more or less explicit estimation of the drift, while IRF-k

method only attempts to filter out its effect.

5.1 Universal kriging

The main problem in nonstationary cases is that the estimation of the drift would

require the knowledge of the variogram, but the estimation of the variogram re-

quires the knowledge of the drift. Universal kriging is a method where the drift

paramaters are estimated in an iterative way, in order to estimate the variogram.

Later in the kriging process this drift is not explicitly used, instead the effect of

such a drift is filtered out.

The variogram is insensitive to constants added to the regionalized variable.

Thus the driftf (u) is be to found up to an additive constant. Suppose that the drift

is of the form:

f (u) =
S

∑
s=0

bs fs(u) (5.2)

where f0(u) = 1 and coefficientsbs are unknown, and have to be found fors> 0.

It is supposed that 5.2 does not hold for the entire domain but only for neigh-

bourhoods. Thus the coefficients are also “local”. The next equations refer to the

case of one neighbourhood. The estimators of the coefficients are taken as linear

combinations of the measured values:

Bs =
n

∑
i=1

di,sZ(ui) (5.3)
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These estimators should be unbiased, which means that:

E[Bs] = bs =
n

∑
i=1

di,sE[Z(ui)] (5.4)

Using (5.2) one has:

bs =
n

∑
i=1

di,s

S

∑
q=1

bq fq(ui) (5.5)

From this it follows that:

bs =
S

∑
q=1

bq

n

∑
i=1

di,s fq(ui) (5.6)

If the functionsfs(u) are linearly independent then from (5.6) it follows that:

n

∑
i=1

di,s fq(ui)


1 if q = s

0 if q 6= s
(5.7)

The variance of the estimator is

Var[Bs] = Var

[
n

∑
i=1

di,sZ(ui)

]
(5.8)

as only those linear combinations have a finite variance for which

n

∑
i=1

di,s = 0 (5.9)

Using this one can calculate the estimation variance:

Var[Bs] =
n

∑
i=1

n

∑
j=1

di,sd j,sγ(ui −u j) (5.10)

This estimation variance is to be minimized under the unbiasedness conditions

5.7 . Introducing the Lagrange multipliers this leads to a set of equation systems

similar to the kriging system:
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n

∑
j=1

d j,sγ(ui −u j)+µ0,s+
S

∑
q=1

µq,s fs(u) = 0 for i = 1, . . . ,n

n

∑
i=1

di,s = 0

n

∑
i=1

di,s fq(ui)


1 if q = s

0 if q 6= s
(5.11)

Solving the above equation systems fors = 1, . . . ,S one obtains the coefficients

di,s and from this thebs-s. The only problem with the above approach is that the

calculation of the coefficients requires also the knowledge of the variogram. An

iterative procedure can help to overcome this problem.

1. Determine the type of the drift (usually order of the polynomial).

2. Take a theoretical variogramγ, and calculate the drift coefficients.

3. Calculate the experimental variogram of the residuals.

4. Compare the theoretical variogram taken in step 2 and the calculated exper-

imental. If the correspondance between the two curves is good then stop,

else repeat from step 2 with a new theoretical variogram fitted to the exper-

imental.

The previous procedure was ment to estimate the variogram of the nonstationary

regionalized variable. If the variogram is available then the estimation of the value

at a point or block can be done in a similar way to kriging. The main difference is

that the drift has to be taken into account. The estimator is linear :

Z∗(u) =
n

∑
i=1

λiZ(ui) (5.12)

The unbiasedness conditions in this case is:

E

[
n

∑
i=1

λiZ(ui)−Z(u)

]
= 0 (5.13)
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Using equations (5.1) and (5.2) this leads to:

n

∑
i=1

λi

S

∑
s=0

bs fs(ui)−
S

∑
s=0

bs fs(u) = 0 (5.14)

From which:
S

∑
s=0

bs

[
n

∑
i=1

λi fs(ui)− fs(u)

]
= 0 (5.15)

This equation should hold for any possible coefficientsbs. This is fulfilled if:

n

∑
i=1

λi fs(ui)− fs(u) = 0 for s= 0, . . . ,S (5.16)

As the estimation variance is:

σ2(u) = Var[Z(u)−Z∗(u)] =−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui −u) (5.17)

the best unbiased linear estimator is the one which minimizesσ2(u) under the

constraints (5.16). Introducing the usual Lagrange multipliers this leads to a linear

equation system:

n

∑
j=1

λ jγ(ui −u j)+
S

∑
s=0

µs fs(ui) = γ(ui −u) i = 1, . . . ,n

n

∑
i=1

λi fs(ui) = fs(u) s= 0, . . . ,S (5.18)

Universal kriging was the first geostatistical method dealing with non-stationary

random functions. The iterative estimation of the variogram is a time consuming

work, and there is no guarantee that the results will converge.

5.2 Intrinsic random functions of order k

Suppose that instead of a complete knowledge of the drift its funtional form is

given:

f (u) =
S

∑
s=0

bs fs(u) (5.19)
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where coefficientsbs are unknown.

The basic idea is to use increments of the sample values instead of the orig-

inal values. These increments are formed in such a way that the unknown drift

coefficientsb j do not influence them.Z′(Θ) is an increment if it is of the form:

Z′(Θ) =
n

∑
i=1

θiZ(ui) (5.20)

hereΘ stands for the vector(θ1, . . . ,θn), whereθi-s are real numbers, such that

the value of the increment is independent of the drift.

IncrementZ(Θ) is independent of the unknown coefficientsb j of the drift if

for all j
n

∑
i=1

θi fs(ui) = 0 (5.21)

In this case using (5.1) one has:

Z′(Θ) =
n

∑
i=1

θiZ(ui) =

=
n

∑
i=1

θi f (ui)+
n

∑
i=1

θiY(ui) =

=
n

∑
i=1

θi

S

∑
s=0

bs fs(ui)+
n

∑
i=1

θiY(ui) =

=
S

∑
s=0

bs

n

∑
i=1

θi fs(ui)+
n

∑
i=1

θiY(ui) =

=
n

∑
i=1

θiY(ui) (5.22)

Thus in the case of the above drift the increment is the same as for the station-

ary residual. This enables the calculation of a generalized covariance function.

The simplest case is if the functionsf (u) is a polynomial of order k. In this case

(5.21) can be written as:
n

∑
i=1

θix
p
i = 0 (5.23)
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for all p≤ k in the 1 dimensional case.

n

∑
i=1

θix
p
i yq

i = 0 (5.24)

for all p,q such thatp+q≤ k in the two dimensional case.

n

∑
i=1

θix
p
i yq

i wr
i = 0 (5.25)

for all p,q, r such thatp+q+ r ≤ k in the three dimensional case.

In the case ofk = 1, which means that there is an unknown linear trend, (5.23)

represents 2 equations for the 1 dimensional case, namely:

n

∑
i=1

θi = 0 (5.26)

n

∑
i=1

θixi = 0 (5.27)

In two dimensions (5.24) represents 3 equations, the above two and:

n

∑
i=1

θiyi = 0 (5.28)

In three dimensions (5.25) represents 4 equations, the above three and:

n

∑
i=1

θiwi = 0 (5.29)

If k = 2 (quadratic trend)d(d+1)
2 additional equations have to hold. For example

in the two dimensional case:
n

∑
i=1

θix
2
i = 0 (5.30)

n

∑
i=1

θiy
2
i = 0 (5.31)

n

∑
i=1

θixiyi = 0 (5.32)
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In practice higher order polynomials are rarely used.

As Z′(Θ) is supposed to be stationary, its variance can be calculated with the

help of the generalized covariance functionK(h)

Var[Z′(Θ)] =
n

∑
i=1

n

∑
j=1

θiθ jK(ui −u j) (5.33)

Herehi, j is the distance between pointsui andu j . Matheron (1973) has shown

that valid generalized covariances for IRF-k s are of the form :

K(h) = Cδ(h)+
k

∑
r=0

(−1)r+1arh
2r+1 (5.34)

Hereδ(h) = 1 if h = 0 andδ(h) = 0 elsewhere. This term represents the nugget

effect.

Coefficients have to fulfil some additional conditions:C ≥ 0 a0 ≥ 0, a2 ≥ 0

anda1 ≥ 10
3
√

a0a2. Using a set of admissible increments and calculating the cor-

responding variances, according to equation (5.33) the coefficientsC andar can

be estimated. This can be done in several ways, an overview is given in Kitanidis

(1983). In the present study the most traditional estimators using weighted re-

gression techniques (Delfiner 1976), and the minimum norm estimator (Kitanidis

1983) was used.

Having identified the generalized covariance function, the minimum variance

estimator of the parameter at a given location can be calculated. For weightsλi

Var[Z(u)−
n

∑
i=1

λiZ(ui)] =
n

∑
i=1

n

∑
j=1

λiλ jK(hi, j)−2
n

∑
i=1

λiK(hi) (5.35)

Herehi is the distance between pointsui andu. The weights should be selected to

be insensitive to the drift:
n

∑
i=1

λi f j(ui) = f j(u) for j = 1, . . . ,m (5.36)

Depending on the dimension of the space and the orderk (5.36) means a dif-

ferent number of equations. Ifk = 1 then in the one dimensional case:
n

∑
i=1

λi = 1 (5.37)
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and
n

∑
i=1

λixi = x (5.38)

In two dimensions the above two equations and:

n

∑
i=1

λiyi = y (5.39)

In three dimensions the above three equations and:

n

∑
i=1

λiwi = w (5.40)

If k = 2 (quadratic trend)d(d+1)
2 additional equations have to hold. For example

in the two dimensional case:
n

∑
i=1

λix
2
i = x2 (5.41)

n

∑
i=1

λiy
2
i = y2 (5.42)

n

∑
i=1

λixiyi = xy (5.43)

Weightsλi can now be calculated with the help of the following linear equation

system:

n

∑
j=1

λ jK(hi, j)+
S

∑
s=0

µs fs(ui) = K(hi) i = 1, . . . ,n

n

∑
i=1

λi fs(ui) = fs(u) s= 0, . . . ,S (5.44)

here theµs-s are the Lagrange parameters. Depending on the orderk and the

dimension of the spaced these equations can be written with the help of the coor-

dinatesx,y,w.

As coefficientsC,a0,a1,a2, . . . of the generalized covariance function can be

calculated with the help of regression methods. IRF-k are well suited for auto-

matic structure identification and automatic contouring.
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A substantial difference between ordinary kriging and use of IRF-k lies in the

different degree of structural analysis. Variograms show several properties of the

parameter which cannot be recognized using IRF-k. Different methods (Cressie

- Hawkins estimators, trimmed means) can be used to obtain a useful variogram

but there is no analogue for IRF-k.

EXAMPLE 6.1 :

u1 u2 u u3 u4

Figure 5.1: Data configuration for example 6.1

Suppose that using four points on a straight line the value at a fifth point is to

be estimated. The points areu1 = −3, u2 = −2, u3 = 1, u4 = 2. The point for

which the estimation is to be done isu = 0. Figure 5.1 shows the configuration.

Suppose thatZ is a non stationary random variable of the form

Z(u) = u2 +u+Y(u) (5.45)

whereY is intrinsic. Table 5.1 shows the data values.

Interpolation using IRF-0 IRF-1 and IRF-2 is investigated. The generalized

covariance function is assumed to be in each caseK(h) =−h. (Note that different

constant multiples would yield the same results.)

The equation system in case ofk = 0 is

0λ1−1λ2−4λ3−5λ4 +µ1 = −3

−1λ1 +0λ2−3λ3−4λ4 +µ1 = −2

−4λ1−3λ2 +0λ3−1λ4 +µ1 = −1

−5λ1−4λ2−1λ3 +0λ4 +µ1 = −2

λ1 +λ2 +λ3 +λ4 = 1 (5.46)
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Point Y Z

u1 -1.0 7.0

u2 -0.5 2.5

u3 0.0 2.0

u4 1.0 7.0

Table 5.1: Values ofY andZ

From this one hasλ2 = 0.3333, λ3 = 0.6667 λ1 = λ4 = 0 andµ1 = 0. Thus

σ2 = 1.3333 andZ∗(u) = 2.1667.

The equation system in case ofk = 1 is

0λ1−1λ2−4λ3−5λ4 +µ1−3µ2 = −3

−1λ1 +0λ2−3λ3−4λ4 +µ1−2µ2 = −2

−4λ1−3λ2 +0λ3−1λ4 +µ1 +1µ2 = −1

−5λ1−4λ2−1λ3 +0λ4 +µ1 +2µ2 = −2

λ1 +λ2 +λ3 +λ4 = 1

−3λ1−2λ2 +1λ3 +2λ4 = 0 (5.47)

For this case the solution is againλ2 = 0.3333, λ3 = 0.6667 λ1 = λ4 = 0 and

µ1 = µ2 = 0. Thusσ2 = 1.3333 andZ∗(u) = 2.1667. The explanation of this is

that the additional equation was already fulfilled by the solution of the previous

system.

The equation system in case ofk = 2 is

0λ1−1λ2−4λ3−5λ4 +µ1−3µ2 +9µ3 = −3

−1λ1 +0λ2−3λ3−4λ4 +µ1−2µ2 +4µ3 = −2

−4λ1−3λ2 +0λ3−1λ4 +µ1 +1µ2 +1µ3 = −1

−5λ1−4λ2−1λ3 +0λ4 +µ1 +2µ2 +4µ3 = −2
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λ1 +λ2 +λ3 +λ4 = 1

−3λ1−2λ2 +1λ3 +2λ4 = 0

9λ1 +4λ2 +1λ3 +4λ4 = 0 (5.48)

For this case the solution is different, namely:λ1 = −0.25, λ2 = 0.5833,λ3 =
0.9167,λ4 = −0.25 µ1 = −0.75, µ2 = 0.125 andµ3 = 0.125. Thusσ2 = 1.5833

and Z∗(u) = −0.2083. Note that the selection ofk = 2 (the “correct” choice)

yields a substantially different result. The difference between the driftu2 + u is

the smallest for this case. As the number of constraints increased the estimation

variance which is a constrained optimum also increased.

5.3 External-Drift-Kriging

External knowledge can be incorporated into the system with the External-Drift

Kriging (EDK) (Ahmed and de Marsily 1987). Here it is supposed that an addi-

tional variableY(u) that is linearly related to theZ(u) exists. The assumption of

the constant expected value is thus replaced by:

E[Z(u) |Y(u)] = a+bY(u) (5.49)

wherea and b are unknown constants. The linear estimator (5.50) should be

unbiased for anya andb values. The linear estimator:

Z(u) =
n

∑
i=1

λiZ(ui) (5.50)

is considered. Minimizing the estimation variance under the above assumption

leads to the linear equation system:

I

∑
j=1

λ jγ(ui −u j)+µ1 +µ2Y(ui) = γ(ui −u) i = 1, . . . , I

I

∑
j=1

λ j = 1
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I

∑
j=1

λ jY(u j) = Y(u) (5.51)

whereµ1 andµ2 are Lagrange-multipliers. The Variogramm used in (5.51) is the

time invariant curve, as also used in OK. Note that the variableY has to be known

at the locationx, to perform an estimation. The estimator thus depends on the

additional variableY(u).
EDK is an alternative for co-kriging. EDK can be taken if the secondary in-

formationY(u) is available in a high spatial resolution, preferably regular grid.

Cokriging would require the estimation of covariogramms.
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Chapter 6

Indicator Kriging

6.1 Indicator Variables

There are a great number of categorical natural variables, such as lithofacies, soil

types or other classes. It is often important to know the spatial extension of these

variables. One possibility to do this is to use indicator variables. The indicator

variable of a classC is defined as:

IC(u) =


1 if u∈C

0 else
(6.1)

Even continuous variables can be transformed to indicators. In this case the

classes are defined with the exceedence of certain selected thresholds. The indi-

cator variableIα for a given thresholdα is defined as:

Iα(u) =


1 if Z(u)≤ α

0 if Z(u) > α
(6.2)

The indicator variableI can also be regarded as the probability ofu belonging

to classC or Z(u) being less thanα:
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Figure 6.1: Indicator transformation ofZ(u) for differentα values

IC(u) = P[u∈C] (6.3)

If indicator coding is performed for for a numerical variableZ(u)) using each

real valueα then each observation is transformed into a step function. In practice

a set of differentαk valuesk = 1, . . . ,K is selected, andZ(u) is transformed into

theK dimensional vector(Iα1(u), . . . , IαK(u)).
The indicator variablesIα(u) are defined by dividing the measurement values

into classes.

6.2 Indicator Variograms

Similarly as in the case of arbitrary numerical variables one can also calculate

variograms using indicators. The experimental Indicator variogramγ∗I (h) is cal-

culated as: The variogram can be estimated with the help of the following formula

as in the case of the experimental variograms (Eq. 3.1):

γ∗(h) =
1

2N(h) ∑
ui−u j=h

(Iα(ui)− Iα(u j))2 (6.4)

HereN(h) is the number of pairs of locations separated by the vectorh.

The mean of an indicator variablep equals the probability of occurence of the

corresponding property. The variance of the variable isp(1− p).

6.3 Indicator Kriging

I∗C(u) =
n

∑
i=1

λi IC(ui) . (6.5)

This result can be interpreted as an estimator for probability ofu∈C.
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The weightsλi are calculated from the kriging equations as in the case of OK.

n

∑
j=1

λ jγI (ui −u j)+µ = γI (ui −u) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (6.6)

Indicator values can also be interpolated using SK or even EDK.

For numerical variables indicator kriging can be performed for a set of selected

levelsαk. Once this is done the numerical value ofZ(u) can also be estimated.

For this purpose the class meansZ̄k are introduced:

Z̄k =
∑n

i=1Z(ui)(Iαk+1(u)− Iαk(u))
∑n

i=1Z(ui)(Iαk+1(u)− Iαk(u))
(6.7)

The estimatorZ∗(u) for the unknownZ(u) can then be formulated as:

Z∗(u) = I∗α0
(u)α0 +

K

∑
k=0

(I∗αk+1
(u)− I∗αk

(u))Z̄k , (6.8)

with

minz(ui) = α0 < α1 < .. . < αK = maxz(ui)

Note that the indicator kriging approach has the advantages that the estimated

values remain in the prescribed range:

[minz(ui),maxz(ui)]

, and problems arising from highly skewed distributions are more or less over-

come. On the other hand IK has disadvantages too. Even thought the observed

indicator valuesIα(ui) are monotonic as a function of the threshold valueα, this

is not always true for the krigedI∗α(u)-s. The reason for this is that the kriging

weights can also become negative. In this case first theI∗α(u)-s have to be altered

in order to make them monotonic inα. Another problem is the discretization of

the variables. The indicator coding does not distinguish betweenZ(ui) 6= Z(u j)
if they both belong to the same indicator class:αk < Z(ui),Z(u j) < αk+1 which

means a loss of information and a loss of accuracy.
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6.4 Applications

Indicators can very well be used for the mapping of categorical variables, such

as lithofacies, soil types etc. The indicator transformation is also very useful for

variable with highly skewed distributions.

6.4.1 Interpolation of a categorical variable

Consider the problem of interpolating a soil map. Observations of the soil type

are available at selected locationsui .

6.4.2 Detection limit problem

Pollutants with very low concentrations are difficult to interpolate. The main prob-

lem here is that there are measurements which are below the detection limit. If

one tries to estimate the mean value of these parameters for unobserved locations

assumptions of the values being below the detection limits have to be made. There

are several possibilities:

1. To consider these values as zero. This is a very optimistic assumption.

2. Not to consider these data. This assumption leads to an overestimation as

all small values are removed.

3. To consider all these values as a selected value between zero and the detec-

tion limit. This assumption is arbitrary and changes the uncertain data to

exact values.

Instead of the above mentioned cases one can estimate the exceedence probabili-

ties using indicator variables and indicator kriging.

EXAMPLE 6.1 :
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A work on interpolation of the pollution of groundwater in Baden-Würtem-

berg, done in 1995, had to face the following problems dealing with the pollutant

Atrazine:

• The concentrations of Atrazine were of same quantity as the detection lim-

its, so an concrete consideration of values below the detection limits would

have strong influence on the interpolation, the same problem occurs, if the

data below the detection limits would have been removed (s.a.).

• Different measurements had very different detection limits, the biggest lim-

its being multiples of the smaller ones and of same quantity as the values of

most measurement points.

To deal with this data, they were coded with three indicator variables:

α1 = 0,01µg/l α2 = 0,02µg/l α3 = 0,05µg/l .

The positive effect of the indicator coding was, that only measurements with

detection limits bigger than the indicator limit had to be removed from the data-set

in case of being below the detection limit. In the case of a detection limit smaller

than the indicator all measurements could be used: all measurements below the

detection limit had valueIα = 1 then. In this case not all low data are removed

and the problem of overestimation is reduced.

In that work the data-set contained measurements of 2540 points, after removal

of not usable points the data-sets of the three indicator contained:

I3: 2437 points

I2: 1772 points

I1: 1449 points

On this three data-sets kriging was made with different methods as OK, Bayes-

Markov-Kriging and SU. The necessary variograms were calculated for each in-

dicator variable separately.

The figure 6.2 shows the SUK of Desethylatrazine which is a product of de-

composition of herbicide Atrazine forα = 0,05µg/l .
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Figure 6.2: SUK of Desethylatrazine in groundwater in Baden-Württemberg

78



Chapter 7

Kriging with arbitrary additional

information

The previously described procedures can consider additional information, but only

in a numerical form, assuming a linear relationship. A non-linear relationship with

the additional variable or a close connection to a censored variable is also possible.

An estimation method to cope with these problems is the Markov-Bayes Kriging

(MBK) described in Journel and Zhu (1990). Another possibility is to use a simple

updating (SU) procedure.

7.1 Markov-Bayes-Kriging

Formally MBK uses the assumption that additional information can be taken into

account for the assessment of prior distributions at selected locations.

Uα(u) = P[Z(u)≤ α|additional information] (7.1)

If this Uα is different from the distributionF(α) then the additional information

is useful for the estimation ofZ(u). The estimation is then performed by using

the global prior informationF(α), the local priorUα(uk) and the indicator coded

observationsZ(ui). For MBK it has to be assumed thatUα(uk) is available at
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considerably more locations as direct observations ofZ. This way one hopes to

improve the estimation ofZ by using the additional information coded inU . In

several applications the additional information is available for all points in the

investigated domain.

The indicator valuesIα are estimated using a simple cokriging approach:

I∗α(u) = λ0F(α)+
n

∑
i=1

λi Iα(ui)+
K

∑
k=1

νkUα(uk) (7.2)

In fact MBU is a ”mixture” of three possible approaches:

1. assigning the same mean to the whole domain (λ0)

2. spatial interpolation (λi , i = 1, . . . ,n)

3. assigning values from the additional information only. (νk,k = 1, . . . ,K).

The spatial dependence, the configuration of the observation points and the use-

fulness of the additional information are influencing the role of the above factors.

For the calculation of the weightsλi andν one needs the covariance function

of Iα andUα and their cross-covariance function. The formulation of the equations

by using variograms is also possible, but in this case the covariance based form is

simpler.

According to Journel and Zhu (1990) the covariance function ofU and the

cross covariance function ofI andU can be expressed with the help of the covari-

ance function ofI .

CIU (h) = B(α)CI (h) (7.3)

CU(h) =


B2(α)CI (h) if h > 0

B2(α)+V2
f (α) for h = 0

(7.4)

Here the quantitiesB(α),Vc(α) andVf (α) reflect the usefulness of the addi-

tional information. They are formally defined as

B(α) = E[Uα(x, t)|Iα(x, t) = 1]−E[Uα(x, t)|Iα(x, t) = 0] (7.5)
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and

V2
f (α) = Ft(α,x)Var[Uα(x, t)|Iα(x, t) = 1]+(1−Ft(α,x))Var[Uα(x, t)|Iα(x, t) = 0]

(7.6)

The weightsλi andνk are calculated by using simple cokriging with the single

additional pointx:

n

∑
i=1

λiCI (xi −x j)+
K

∑
k=1

νkCIU (x j −x′k) = CI (x j −x)

for j = 1, . . . ,n
n

∑
i=1

λiCIU (xi −x′l )+
K

∑
k=1

νkCU(x′l −x′k) = CIU (x′l −x) (7.7)

One can see from the equation system above that the updating of the prior

functions depends onCU andCIU . The bigger the value ofV2
f (α) the higher is

the importance of the hard information. This is reasonable asV2
f (α) reflects the

quality of the additional information.

The additional informationY(x) available at each locationx′k is used to define

the variableUα as

Uα(x, t) =
1

N(x) ∑
Y(x′k)≈Y(x)

Iα(x j , t) (7.8)

N(x) is here the number of observation points which have similarY values (Y(x′k)≈
Y(x j)). In practice this is done the way that classes are defined for the variable

Y(x), and the mean indicator values over the classes are assigned to the unob-

served locations as prior information. Note thatY(x) can be any classification,

both numeric values can be grouped into classes or categorical variables, such as

land use. The quantitiesB(α) andVf (α) can easily be calculated onceUα has

been defined.

7.2 Simple Updating (SU)

Consider the situation whereZ(x) is complemented by a secondary variableL(x)
available at each point in the domain. This variable is discrete, and related toZ(x)
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through a conditional expectation:

E[Z(x) | L(x) = l ] = ml (7.9)

and a conditional variance:

Var[Z(x) | L(x) = l ] = σ2
l (7.10)

In this case the first estimation ofZ(x) is that based onL(x)

Z′(x) = mL(x) + εL(x)(x) (7.11)

with εL(x)(x) being a random error with 0 expectation and varianceσ2
L(x). Using

Z′(x) for the estimation ofZ(x) combined with the observations one has:

Z∗(x) = λ0Z′(x)+
n

∑
i=1

λiZ(xi) (7.12)

The estimation variance for this estimator is:

Var[Z(x)−Z∗(x)] =−
n

∑
j=1

n

∑
i=1

λ jλiγ(xi −x j)+

+2
n

∑
i=1

λi(1−λ0)γ(xi −x)+λ2
0E[ε(x)2] (7.13)

Minimizing this estimation variance with respect to the unbiasedness condi-

tion leads to the equation system:

n

∑
j=1

λ jγ(xi −x j)+µ = (1−λ0)γ(xi −x) i = 1, . . . ,n

n

∑
j=1

λ jγ(x−x j)+µ = λ0σ2
l

n

∑
j=0

λ j = 1 (7.14)

This is a linear equation system for the unknown weightsλi , and the solution

yields the estimatorZ∗(x). The additional variableL(x) can be any discrete vari-

able, for example soil type, landuse or geological code.
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In practice we suppose that additional information in the form of a discrete

index(1, . . . ,M) L(x) is available for every location in the field. For each classl

the mean ant the variance can be calculated as

ml = ∑n
i=1Z(xi)1{L(xi) = l}
∑n

i=11{L(xi) = l}
(7.15)

s2
l = ∑n

i=1(Z(xi)−ml )21{L(xi) = l}
(∑n

i=11{L(xi) = l})−1
(7.16)

EXAMPLE 7.1 :

A work on interpolation of the pollution of groundwater in Baden-Württem-

berg, done in 1995, intended to optimize the interpolation by use of additional

information, available for the whole area of interest. Available information was

a classification of landuse in 16 classes, and a classification of the groundwater

geology in 19 classes.

The pH-value was interpolated with both classifications using MBK. For this

purpose the classifications had to be revised by combining smaller classes, to

achieve classes with at least 18 points of measurement. This was necessary to

get statistical values of this classes of sufficient quality. This grouping was done

manually and reduced the number of classes to 13 classes of landuse and 15 of

geology.

The data were coded to 9 indicator variables which correlations were calcu-

lated. The distribution of data of the classes of landuse and geology were calcu-

lated and also their correlations and the cross-correlations to the indicator func-

tions. With these prior informations a BMK was calculated. This contains a big

amount of calculations, especially 9 variograms for the indicator variables.

EXAMPLE 7.2 :
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The same data have been optimised with the SU-algorithm in a second work

on the pollution of groundwater in Baden-Württemberg in 1996. Because SU

affords a significant less amount of calculation and especially only one variogram

has to be fitted, it has been possible to spend more work on the optimisation of the

classification.

For this purpose a combined classification of landuse and geology has been

made, containing 304 classes. These had to be combined to classes with at least 18

points of measurement. For that work algorithms had been designed, combining

classes under aspects of statistical similarities in the parameter of interest and

under the aspect of similarities in their character (combining classes with forest-

type landuse to each other etc.). This lead to classifications of a quantity of fifty

to sixty classes for a data-set containing 2540 points of measurement.

These classifications were used for a SU-algorithm. In table 7.1 the Mean-

Square-Error (MSE) of cross-validations of some of that calculations are pre-

sented (for two different groupings of the classes), compared to results of example

7.1 and of an OK of the same data-set. The ranking of interpolation of this exam-

ples are not general. Calculations on other data-sets (e.x.NO3) presented different

rankings, at least SU was the most powerfull algorithm for all seven data-sets in

that investigation.

Table 7.1: Cross-Validation for pH-value

algorithm OK SU(Grouping 1) SU(Grouping 2) MBK(Geology) MBK(Landuse)

MSE 0,089 0,0821 0,0822 0,086 0,097

EXAMPLE 7.3 :

Another parameter investigated in the work on the pollution of groundwater

in Baden-Ẅurttemberg was Nitrate. The methods have been the same as in the
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previous examples. To give some impression about the differences in interpolation

some results are presented in the following.

The measurements of Nitrate have been interpolated with different methods,

the results of OK, MBK and SU are presented in the figures 7.3, 7.4 and 7.5. To

get an impression about the data-base figure 7.1 presents a map of the points of

measurement used for the interpolations. The additional informations used for

the interpolations are the landuse for the MBK and a combination of landuse (see

figure 7.1) and geology (see figure 7.2) for the SU. Figure 7.6 shows another SUK

(Simple Updating Kriging) of Nitrate in groundwater in Baden-Württemberg.

Nitrate is one of the seldom examples, where the OK had better results than

the MBK when comparing the Mean-Error of the cross validation. Nevertheless

the MBK seems to be more trusting because OK gives an overestimation in the

surroundings of extreme big values and is not capable to work out spatial struc-

tures caused by the character of the regions like the Black Forest. SU is here

assumed to be the best method, because it has the lowest error in cross validation

combined with clearly outworked structures in the interpolation. The results of

cross validation are shown in table 7.2.

Table 7.2: Cross-Validation for Nitrate[(mg/l)2]

method OK SU(Grouping 3) BMU(landuse)

MSE 374 337 385
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Figure 7.1: Points of groundwater-measurement and landuse in Baden-Württem-

berg
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Figure 7.2: Aquifers in Baden-Ẅurttemberg as additional hydrogeological infor-

mation to SU
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Figure 7.3: OK of Nitrate in groundwater in Baden-Württemberg
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Figure 7.4: MBK of Nitrate in groundwater in Baden-Württemberg
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Figure 7.5: SU of Nitrate in groundwater in Baden-Württemberg
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Figure 7.6: SUK of Nitrate in groundwater in Baden-Württemberg
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Chapter 8

Time dependent variables

Geostatistical methods were originally thought for mining and geological prob-

lems, where at a certain location only one measurement (borehole) can be made,

and a single realization is observed. However in many other applications the same

location can be used for several measurements. For example groundwater quality

or quantity parameters or precipitation is often measured regularly in time. The

question is how to model and how to use this in geostatistical evaluations. Un-

fortunately because of the interest of geostatisticians in single realizations there is

not much in the literature about this problem.

A possible method to include time is extending the intrinsic hypothesis to the

time dimension. This means that measurement locations consist of two parts: a

spatial (1,2 or 3 dimensions), and a temporal. This approach is more or less rea-

sonable for timewise continuous variables like groundwater quality parameters. It

is unreasonable for precipitation (one cannot use the precipitation of June 1 and

June 30 to calculate the precipitation for June 15) and other event-based parame-

ters.

Another possible extension is to use the data corresponding to the same time as

a realization, and to suppose that the different realisations correspond to the same

or at least to a similar process. (The notion of similar process will be explained

later). This second method does not exclude the first, “time cuts” of an intrinsic
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space-time process are also intrinsic in space, and the spatial variograms are the

same.

8.1 Space — time intrinsic variables

The random functionZ(u, t) is space time intrinsic if:

E[Z(u, t)] = m (8.1)

The space time variogram:

γ(h,∆t) =
1
2

Var[Z(u+h, t +∆t)−Z(u, t)] (8.2)

is independent of the locationu and the timet.

For example slowly changing groundwater quality parameters often show such

a space time intrinsic behavior.

A serious problem in calculating space time variograms is that there is no com-

mon distance measure. Spatial distances can be calculated, and time differences,

too. It is important to find the spatial equivalent of a time difference. This can

be done by calculating the experimental variograms for time and for the spatial

stucture separately.

γ∗T(∆t) =
1

2NT(h) ∑
(i, j)∈RT(h)

(Z(ui , ti)−Z(u j , t j))2 (8.3)

Here

RT(h) = {(i, j);∆t− ε ≤ |ti − t j | ≤ ∆t + ε and(ui = u j)} (8.4)

andNT(h) = the number of elements inRT(h). For the spatial structure:

γ∗S(h) =
1

2NS(h) ∑
(i, j)∈RS(h)

(Z(ui , ti)−Z(u j , t j))2 (8.5)

where

RS(h) = {(i, j);h− ε ≤ |ui −u j | ≤ h+ ε and|ti − t j | ≤ δ} (8.6)

andNS(h) = the number of elements inRS(h) There two possibilities:
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1. The two kinds of experimental variograms are similar, have the same nugget

effect and the same sill. This means that a geometric anisotropy can be con-

sidered between the time and spatial scale. In this case a linear transfor-

mation of the time scale leads to a space—time isotropic model. The new

“length” of a vector(h,∆t) is defined as:

|(h,∆t)|=
√
|h|2 +kt |∆t|2 (8.7)

2. The two kinds of experimental variograms are different, having different

shape and/or sill etc. In this case a zonal anisotropy type of modelling can

be used. Namely the space—time variogramγST(h,∆t) can be written in the

form:

γST(h,∆t) = γS(h)+ γT(∆t) (8.8)

In both cases space—time kriging and space time simulation can be done similarly

as in the spatial case.

8.2 Spatially intrinsic variables with time indepen-

dent variograms

The random functionZ(u, t) is spatially time intrinsic with time independent var-

iograms if:

E[Z(u, t)] = m (8.9)

The spatial variogram :

γ(h) =
1
2

Var[Z(u+h, t +∆t)−Z(u, t)] (8.10)

is independent of the locationu and the timet if ∆t ≤ δ.
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8.3 Spatially intrinsic variables with time dependent

variograms

The random functionZ(u, t) is spatially time intrinsic with time dependent similar

variograms if:

E[Z(u, t)] = m(t) (8.11)

and the spatial variogram at the given timet:

γ(h, t) = k(t)
1
2

Var[Z(u+h, t +∆t)−Z(u, t)] (8.12)

is independent of the locationu if ∆t ≤ δ andk(t) is a time dependent function.

There are several possible choices for the functionk(t). For example

• Mean proportional variograms :

k(t) = m(t)2 (8.13)

This means thatZ(u,t)
m(t) is spatially intrinsic with a time independent vari-

ogram.

• Variance proportional variograms :

k(t) = Var[Z(u, t)] with fixed t (8.14)

This means that the correlation structure is preserved over the time.

8.4 Time series interpreted as different realisations

In the case of fast changing or event-based parameters, time series can be used

for a far-reaching analysis of the spatial correlation structure of the obtained data.

This requires that we can assume the observed process as similar during time, but

similarity is only necessary in the correlation of the events in spatial distributed
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points of measurements. If this assumption is possible, can be detected by cal-

culating thecorrelation coefficientρ for time series of pairs of the locations of

measurementui andu j :

ρi j =
C[Z(ui , t),Z(u j , t)]√

Var[Z(ui , t)] ·Var[Z(u j , t)]
(8.15)

with temporal covariance C:

C[Z(ui , t),Z(u j , t)] = E[{Z(ui , t)−E[Z(ui , t)]}{Z(u j , t)−E[Z(u j , t)]}] (8.16)

The correlation coefficient is the standardized temporal covariance, the value

1 shows a strict positive linear relation between the two time-series, a 0 indicates

two time-series without any (linear) relation, negative values indicate negative

linear relations. If calculated for a number of pairs, the correlation coefficient

denoted as a function of the distance between those pairs should show a similar

figure then a spatial covariance function (c. chapter 2.3).

If the assumption of similarity in time is met, the correlation coefficients can

be used mainly in two ways:

1. The covariances according to the correlation coefficients are a quite better

base for calculating a spatial variogram than the measured values for a sin-

gle time. For this they can be used directly as a covariance cloud to estimate

a spatial covariance, similar to a variogram cloud used for the estimation of

a variogram, and then used for kriging calculation. For this purpose it is eas-

ily possible to express the Kriging conditions in terms of correlation instead

of variogram (c. chapter 4.1).

2. The information contained in the spatial correlation structure can be used for

a further optimisation of a theoretical correlation function. For this purpose

spatial transformations can be calculated on this base.

EXAMPLE 8.1 :
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For example precipitation is known to depend on the height and on the slope

of the terrain observed. In actual research an optimisation of the spatial correla-

tion structure is aimed by a transformation in a high dimensional space. In this

transformed space height and the slope are additional dimensions and the transfor-

mation includes several scaling parameters which are fitted to a theoretical spatial

correlation function. The calculation fits seven spatial scaling parameters plus

two free parameters for the theoretical correlation function which is quite a big

amount (which can only be done numerically) but the results show a significant

lesser discrepancy between theoretical and experimentally observed correlation.
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Chapter 9

Simulation

Kriging as most interpolation techniques delivers idealized smooth results. This

is because the minimum estimation variance as optimality criterion necessarily

yields less variable estimators. If an experimental variogram is calculated from

the kriged values, then it is different from the one obtained from measurements.

Variances corresponding to different distances are usually much smaller for the

kriged values. In many cases the variability of the regionalized variable plays

a central role for decisions (for example reliability aspects). Therefore a proce-

dure to obtain interpolation reproducing the variogram of the original variable is

needed. Simulation is the method for doing this.

Simulation should reproduce the variability of the regionalized variable. The

simulated values should have the same mean, variance and variogram as the mea-

sured ones. Quite often the histogram of the measured values should also be

reproduced. Simulation should deliver one possible reality.

Simulation is very useful in the case of parameters which are themselves not

a final product of the analysis. For example in groundwater modeling hydraulic

conductivity is an essential parameter, but it is an input of a subsequent model.

The pupose of modeling is to deliver accurate head values, which are dependent

on the hydraulic conductivities. Expected head values are not the same as the head

values calculated with expected conductivities.
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9.1 Basic definitions

Simulation methods form two different groups:

1. methods generating realizations with given spatial variablity and distribu-

tion

2. methods gegenerating realizations with given spatial variablity under con-

sideration of additional information

In both groups depending whether the simulated realizations honor the obser-

vations or not two cases are distinguished:

1. unconditional simulations: delivering realizations with prescribed variablity

without honoring the observation data

2. conditional simulations: delivering realizations with prescribed variablity

honoring the observation data

There are at least four different ways simulating realizations ofZ(u) under the

above constraints:

• Monte Carlo simulations

• turning band simulations

• sequential simulations

• simulated annealing

9.2 Monte Carlo Simulations

Monte Carlo simulations generate realizations multidimensional (generally nor-

mal) distributions. The simulation usesYj independent standard normally (N(0,1))
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distributed random variablesYj . Let the variablesZi be linear combinations of the

Yj -s:

Zi =
N

∑
j=1

ci jYj

The covariance ofZi andZk is:

Cov(Zi ,Zk) = Cov(
N

∑
j=1

ci jYj ,
N

∑
l=1

cklYl ) = E(
N

∑
j=1

ci jYj

N

∑
l=1

cklYl ) =

= E(
N

∑
j=1

ci j ck jYjYj) =
N

∑
j=1

ci j ck j (9.1)

Here we used the independence of theYj -s.

In this case the covariance matrixΓ is decomposed as the product of a matrix

and its transpose:

Γ = CCT (9.2)

This latter matrix is then used to transform a vector of independentN(0,1) ran-

dom variables to the required multidimensional distribution. The disadvantage of

this method is that the dimension of the covariance matrix equals the number of

points for which simulated values should be calculated, thus the computational

requirements of the method increase drastically with the number of points. The

’square root’ of the covariance matrix (9.2) can be found using the Jacobi method.

An alternative is to use an LR decomposition of the covariance matrix, which can

be achieved using a Cholevski decomposition.

9.3 Turning Band Simulation

In turning band simulations sets of one dimensional simulations are merged to a

two (or three) dimensional one. One dimensional simulations are performed for

different possible directions “turning” around a center point. Depending on the

variogram different covariance structures have to be used for the one dimensional

simulations. The advantage of the method is that it is nearly independent from the
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number of points. A disadvantage is that the one dimensional covariance structure

corresponding to the variogram has to be calculated (or given analytically).

The general idea of turning band simulations is given on the next few pages,

without full computational details.

9.3.1 Unconditional simulation

The basic idea of turning band simulations is to use a set of one dimensional sim-

ulations to construct the multidimensional one. Projecting a point in the 2 or 3

dimensional space onto these lines, and taking the sum of the values correspond-

ing to the projected points, yields the simulated value.

Suppose that for a set of linesl = 1, . . . ,L, all going through the origin of the

coordinate system, random functions with zero mean andC1(r) covariance func-

tions are simulated independently. LetZl (u) for l = 1, . . . ,L be these functions.

Then for a pointu the random functionZ(u) can be defined as

Z(u) =
1√
L

L

∑
l=1

Zl (〈u,vl 〉) (9.3)

here〈., .〉 denotes the scalar product of the vectors, andvl is the unit vector on line

l . Figure 9.1 explains the definition ofZ(u) in the two dimensional case.

Using the fact thatE[Zi(r)] = 0 the covariance function of the above defined

randomZ(u) is:

C(u1,u2) =
1
L

L

∑
l=1

L

∑
k=1

Zl (〈u1,vl 〉)Zl (〈u2,vk〉) (9.4)

As Zl andZk are independent ifl 6= k the above sum can also be written as:

C(u1,u2) =
1
L

L

∑
l=1

Zl (〈u1,vl 〉)Zl (〈u2,vl 〉)

=
1
L

L

∑
l=1

C1(|〈u1,vl 〉−〈u2,vl 〉|)

=
1
L

L

∑
l=1

C1(|〈u1−u2,vl 〉|) (9.5)
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Figure 9.1: Turning bands lines and the projection

This equation shows thatZ(u) is also stationary. If the unit vectorsvl are uni-

formly distributed on unit sphere or on the unit circle, then taking the limit of the

above expression asL → ∞

C(h) =
1
S

∫
|v|=1

C1(|〈h,v〉|) (9.6)

hereSis the surface of the unitsphere(4π) or the length of the perimeter of the unit

circle (2π) depending on the dimension. As the covariance is isotropic the value

of C(r) for a given distancer can be calculated with the help of any vectorh of

lengthr. The two and the three dimensional cases have to be handled differently.
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Two dimensional simulation

Selectingh= (r,0) and introducing the polar coordinates (9.6) can be rewritten in

the form:

C(r) =
1
2π

∫ 2π

0
C1(r cosϕ)dϕ =

2
π

∫ π
2

0
C1(r cosϕ)dϕ (9.7)

Substitutingτ = r cosϕ

C(r) =
2
π

∫ r

0

C1(τ)√
r2− τ2

dτ (9.8)

The integral equation (9.8) has to be solved for different possible covariance func-

tions — corresponding to variograms with a sill.

Three dimensional simulation

Selectingh=(r,0,0) and introducing the spherical coordinates (9.6) can be rewrit-

ten in the form:

C(r) =
1
4π

∫ 2π

0

∫ π

0
C1(r cosϕ)dϕdθ (9.9)

Introducingτ = r cosϕ after some calculations one finally has:

C(r) =
1
r

∫ r

0
C1(τ)dτ (9.10)

Note that (9.10) is much simpler than its two dimensional equivalent (9.8). It can

even be rewritten as

C1(τ) =
d
dτ

[τC(τ)] (9.11)

This equation makes it possible to derive for each theoretical model the corre-

sponding one dimensional covariance function. Then using one dimensional sim-

ulation methods (many of them can be found in the time series literature)Zl func-

tions are generated, and using (9.3)Z(u) is constructed.
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Simulation of complex models

The solution of the equations relating the three dimensional covariance function

to the one dimensional is quite difficult. For complex models it is much simpler

to use the solution for the particular models (spherical, exponential etc.) and

to simulate random functions for these models. The simulation for the complex

model can then be constructed with the help of (3.14) and (3.15).

The same idea can be used to simulate random functions with zonal anisotropy.

Turning band simulations generate realisations of multidimensional normal distri-

butions. The reason for this is that the random function is the sum of independent

random variables, and by the central limit theorem these sums converge to the

normal distribution. In order to obtain simulations for non normal distributions

transformations have to be done. The transformation which transforms the re-

quired distribution to the normal has to be found. Then using this transformation

variograms of the transformed variable have to be calculated. Simulation is then

performed for the transformed variable, and finally the results are transformed

back to the original scale. This procedure often helps but there is no guarantee.

Sometimes even the conditioning transforms the distribution to the required one.

9.3.2 Conditional simulation

The measurement data are not really used in unconditional simulation. It is only

through the variogram they influence simulation results. The knowledge of the

value of a selected parameter at a given point restricts the possible values in a

neighbourhood. Those realizations are specially interesting for which at the mea-

surement points the simulated values equal the measurement values. Uncondi-

tional simulations are conditioned with the help of a simple transformation :

ZC(u) = Z∗(u)+(ZS(u)−Z∗S(u)) (9.12)

here

ZS(u) is the simulated value at pointu
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Z∗S(u) is the kriging estimator ofZS based on the simulated values at the measure-

ment points

ZC(u) is the conditionally simulated value atu

Z∗(u) is the kriging estimator ofZ based on the measurement data

Because of the exactness property of kriging, for measurement pointsui Z∗(ui)=
Z(ui) andZ∗S(ui) = ZS(ui). Thus by definitionZC(ui) = Z(ui). This means that the

above modification of the unconditional simulation reproduces the measurement

values. It can also be shown, that (9.12) does not influence the variability,ZC(u)
andZS(u) have the same variogram.

9.4 Sequential Simulation

Another possibility to obtain simulated random fields is the sequential simulation.

The basic idea of this method is, that conditional distributions of the observed

variable can be assessed and used for the simulation of subsequent points.

9.5 Simulation using Markov Chains

Another possibility to simulate realizations of a random field is simulated anneal-

ing. The basic idea of simulated annealing is to generate realizations of a random

field for which the distributional assumptions are not convenient to sample them

directly. For this purpose a Markov-chain is defined which has the prescribed

limit distribution. The theoretical basis for this is the Hastings algorithm (Hast-

ings 1970).

9.5.1 The Hastings Algorithm

The essential part of this is the Hastings algorithm: A given probability distribu-

tion πi on the finiteΩ can be simulated using a Markov chain. For this purpose

105



take an arbitrary transition matrix

Q = (qi j )

of an irreducible Markov chain. Define the matrixP as:

pi j = αi j qi j (9.13)

and

pii = 1−∑
j 6=i

pi j (9.14)

Let αi j be given by:

αi j =
si j

1+ πiqi j
π jq ji

(9.15)

where thesi j -s have to be symmetric:

si j = sji

and

0 < si j < 1+
πiqi j

π jq ji

For this Markov chain one can see that the limiting distribution of it isπ. In the

Metropolis algorithm theQ matrix is chosen symmetric and:

αi j = min

{
1,

π j

πi

}
(9.16)

Note that in all previous equations the probabilitiesπi had to be known up to a

constant multiplier as only the ratiosπi
π j

were required.

The method can also be applied in the continuous case (see Chib and Green-

berg 1995).

9.5.2 Simulated annealing

In simulated annealing the probability distributionπ is defined with the help of an

objective functionO depending on the statei:

πi = K exp(−O(i)) (9.17)
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In simulated annealing in order to find the limiting distribution on the realizations

corresponding to the minima ofO the temperatureT is introduced. This means

the Hastings algorithm is performed for the limiting distribution:

π(T) = K(T)exp(−O(i)
T

) (9.18)

If the temperatureT is decreased to 0 then for each statei with no global minimum

the probabilityπi(T) → 0. Constraints on the rate of decrease of the temperature

T to ensure a convergence to the uniform distribution on the set of global minima

can be found in Geman and Geman (1984).

The simulation is performed on a predefined grid.

The algorithm can be described as follows:

1. Assign every grid cell corresponding to a measurement location the correct

(measured) value.

2. Assign the remaining cells randomly values from the overall distribution.

3. Select an ”energy function”O, which measures the difference between the

statistical properties of the actual image and the prescribed properties.

4. Select a starting temperaturet, and a number of swapsNS to be tried be-

fore decreasing the temperature. Select a rate in which the temperature

decreases.

5. Select two cells at random which do not correspond to measurement loca-

tions. Swap the values and calculate the value of the energy functionOn

and compare it with the value for the unchanged caseOo. If On < Oo then

keep the swap. Else calculate the probability of acceptancepa:

pa = exp

(
−On−Oo

t

)
(9.19)

Accept the swap with probabilitypa and undo it with probability 1− pa.

6. Repeat the previous stepNS times.
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7. Reduce the temperature slightly, according the rate of 4. Repeat steps 5-6.

8. Repeat the previous step until the energy function valueO is close to zero.

The most important part of this procedure is the selection of the energy functionO.

Here both general assumptions - like the reproduction of a variogram, and other

properties like local distributions can be taken into account. A possible form for a

variogram dependent objective function is:

Oγ = ∑
hi

[γr(hi)− γm(hi)]
2 (9.20)

whereγr is the variogram value corresponding to the generated image andγm is

the variogram to be achieved (model value). The functionγm can in this case

both be a theoretical variogram or even an experimental value. The advantage

here is that difficult cases, such as zonal anisotropy can be simulated with this

approach. Frequently the variogram values corresponding to small distances play

a much more important role, thus the variogram objective function is formulated

with relative deviations as:

Oγ = ∑
hi

[
γr(hi)− γm(hi)

γm(hi)

]2

(9.21)

The objective function for the neighbouring points can be formulated either di-

rectly or from a training image.

ON = ∑
xi

∑
N
| fr − fm| (9.22)

The final energy function is then formulated as a linear combination of the vari-

ogram and the neighbourhood objective function:

O = αγOγ +αN ON (9.23)

with αγ andαN being positive weights.
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Further properties can also be formulated as objective functions. However it

is very important that the objective function has a form which allows a fast update

of the energy function in case of a swap.

The initial temperature should be selected in a way that quite a great number

of non-improving swaps are performed at the beginning of the simulation. This

way the independence of the final result from the initial picture is guaranteed.

The number of swaps to be tried at a given temperature should be high enough, in

general values around the number of points in the simulation grid are recomended.

The advantages of the simulated annealing algorithm include:

1. Arbitrary marginal distributions can be simulated.

2. The objective function can include different information, and can be formu-

lated in a flexible way.

3. The space containing the realizations with the prescribed statistical proper-

ties is sampled uniformly.

4. The algorithm can easily be used for 2 and 3 dimensional realizations.

Besides these important advantages there are a few disadvantages of simulated

annealing.

1. As an optimization method it does not allow deviations from the prescribed

statistical properties. If these are estimated then their possible error hast to

be incorporated.

2. The algorithm is slow. The numerical realization of the simulation requires

fast computing possibilities and an effective formulation of the energy func-

tion changes.
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9.6 Indicator Simulation

There are two main methods for simulating indicator variables. In one case a

continuous variable is simulated and the truncated into discrete classes according

to prescribed limits. In the other case indicators are simulated directly.

9.6.1 Truncated-Gaussian Simulation

The idea of the truncated gaussian approach is to simulate indicator values with

the help of a gaussian variable. SupposeY(x) is a multigaussian random variable

with 0 mean and unit variance. In this case:

Ci = {x ; si−1 < Y(x)≤ si} (9.24)

defines a random set in the space. The probability of anx belonging toCi can be

calculated as:

P(x∈Ci) = P(si−1 < Y(x)≤ si) = Φ(si)−Φ(si−1) (9.25)

The thresholdssi have to satisfy:

s0 =−∞ sn = +∞

The indicator variograms and cross-variograms can be calculated form the covari-

ance matrix of the multigaussian variableY(x)
Conditional simulation of the indicatorsICi requires a further step as the cor-

respondingY values are unknown.

9.7 Application of simulations

There are several possible applications for unconditional and conditional simula-

tions. The classical mining applications were forecasting quality fluctuations for

blending and processing.
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It can also be successfully used in calibrating non linear complex systems

(like groundwater movement). In this case as the output of the system is not

linearly dependent on the regionalized variable usage of the kriged values does

not necessarily lead to expectations of the output. Thus using a set of simulations

can yield better estimates.

Another application is sensitivity analysis. Conditional simulations can help

to calculate realistic sensitivities, as both the dependence and the measurement

locations are considered.

9.7.1 Examples

Consider the problem of estimating areal rainfall for hydrological modelling and

extreme value statistics. Areal rainfall cannot be measured directly, and thus has

to be estimated on the basis of point values. The estimation can be done using OK

or EDK or IRF-k. In general this is done by interpolating precipitation values on a

dense regular grid, and then calculating the mean of the grid values corresponding

to the selected area (subcatchment). It is obvious that the probability of measuring

the maximum precipitation amounts at the raingauges is very low.
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Chapter 10

Exercises

10.1 The Variogram

10.1.1 Question: 1

1. The matrix in figure 10.1 is considered to be a set of measurements (ex.

relative soil humidity in percent) on a regular grid with vertical (y) and hor-

izontal (x) distance of 1 between neighbouring points.

Calculate the experimental variogram for horizontal (x,≈ 0◦ ), vertical (y,≈
90◦ ) and for the diagonal (45◦ ) direction for the shortest possible nonzero

distance each.

10.1.2 Solution: 1

The general formula for the variogram - for a specific distance or vectorh is:

γ(h) =
1

2N(h) ∑
ui−u j=h

(Z(ui)−Z(u j))2
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Figure 10.1: A set of measurements

whereN(h) is the number of pairs separated by the vector (or distance)h.

Applying the formula for this exercise gives:

1. for horizontal direction, minimal nonzero distance is 1, 6 pairs of the 3x3

matrix:

γ(1hor) =
1

2·6
((40−42)2 +(42−43)2 +(41−42)2 +(42−45)2 +(43−44)2 +(44−47)2)

γ(1hor) =
1

2·6
(22 +12 +12 +32 +12 +32)

γ(1hor) =
25
12

= 2.083

2. for vertical direction, minimal nonzero distance is 1, 6 pairs of the 3x3

matrix:
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γ(1ver) =
1

2·6
((40−41)2 +(41−43)2 +(42−42)2 +(42−44)2 +(43−45)2 +(45−47)2)

γ(1ver) =
1

2·6
(12 +22 +02 +22 +22 +22)

γ(1ver) =
17
12

= 1.416

3. for diagonal (45◦) direction, minimal nonzero distance is 1.414 =
√

2, 4

pairs of the 3x3 matrix:

γ(1.41445) =
1

2·4
((41−42)2 +(43−42)2 +(42−43)2 +(44−45)2)

γ(1.41445) =
1

2·4
(12 +12 +12 +12)

γ(1.41445) =
4
8

= 0.5

10.1.3 Question: 2

The following matrix is considered to be a set of measurements (ex. relative soil

humidity) on a regular grid with vertical (y) and horizontal (x) distance of 1 be-

tween neighbouring points:

Calculate the experimental indicator variograms for horizontal (x,≈ 0◦), verti-

cal (y,≈ 90◦) direction for distance 1 each, using the indicator thresholds 0.3 and

0.4.
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- x

6

y

0.46

0.34

0.23

0.44

0.29

0.29

0.47

0.36

0.35

10.1.4 Solution: 2

The general formula for the variogram - for a specific distance or vectorh is:

γ∗(h) =
1

2N(h) ∑
ui−u j=h

(Z(ui)−Z(u j))2

whereN(h) is the number of pairs separated by the vector (or distance)h. The ap-

plication of an indicator variable means to transform the matrix of measurements

to 0 and 1 values (0, if above threshold; 1, if below or equal). Applying this for

the threshold 0.3 gives:

- x

6

y

0

0

1

0

1

1

0

0

0
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Applying the formula of the variogram on this gives:

Horizontal:

γ∗(1hor) =
1

2·6
((1−1)2 +(1−0)2 +(0−1)2 +(1−0)2 +(0−0)2 +(0−0)2)

γ∗(1hor) =
1
12

(0+1+1+1+0+0) =
3
12

= 0.25

Vertical:

γ∗(1ver) =
1
12

(1+0+0+1+0+0) =
2
12

= 0.1667

Applying this for the threshold 0.4 gives:

- x

6

y

0

1

1

0

1

1

0

1

1

Horizontal:

γ∗(1hor) =
1
12

(0+0+0+0+0+0) =
0
12

= 0.0

Vertical:

γ∗(1ver) =
1
12

(0+1+0+1+0+1) =
3
12

= 0.25
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10.1.5 Question: 3

The following figure 10.2 presents a set of measurements of a parameter (ex. ni-

trate in mg/kg in the soil of a small field) on a regular grid of 1 m cell size. Fields

marked with ”x” are points without measurements:

-

1 2 3 4
x

6

0

1

2

3

4

5

y

x

13

x

18

21

15

x

15

x

24

18

22

x

x

26

11

x

11

x

19

Figure 10.2: A set of measurements

Calculate the experimental variogram distances 1m and 2m inx andy direc-

tion.
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10.1.6 Solution: 3

The general formula for the variogram - for a specific distance or vectorh is:

γ(h) =
1

2N(h) ∑
ui−u j=h

(Z(ui)−Z(u j))2

whereN(h) is the number of pairs separated by the vector (or distance)h. Apply-

ing the formula gives:

1. for the horizontal direction (x) and distance 1m, 4 pairs of the matrix:

γ(1hor) =
1

2·4
((19−21)2 +(21−24)2 +(24−26)2 +(15−18)2)

γ(1hor) =
1

2·4
(22 +32 +22 +32)

γ(1hor) =
26
8

= 3.25

2. for the vertical direction (y), distance 1m, 2 pairs of the matrix:

γ(1ver) =
1

2·2
((21−18)2 +(22−18)2)

γ(1ver) =
1

2·2
(32 +42)

γ(1ver) =
25
4

= 6.25
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3. for the horizontal direction (x) and distance 2 m, 5 pairs of the matrix:

γ(2hor) =
1

2·5
((19−24)2 +(21−26)2 +(11−15)2 +(13−22)2 +(11−15)2)

γ(2hor) =
1

2·5
(52 +52 +42 +92 +42)

γ(2hor) =
163
10

= 16.3

4. for vertical direction (y), distance 2m, 5 pairs of the matrix:

γ(2ver) =
1

2·5
((19−11)2 +(11−11)2 +(18−13)2 +(24−15)2 +(15−15)2)

γ(1ver) =
1

2·5
(82 +02 +52 +92 +02)

γ(2ver) =
170
10

= 17.0

10.1.7 Question: 4

Measurement of a certain physical quantity which varies spatially was carried

out at different locations. The measured values of the quantity and their spatial

locations are shown in figure 10.3.

Calculate the lag 1 indicator variogram for the quantity for a cut-off value of

31

1. in thex direction

2. in they direction

3. without considering the direction.
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Figure 10.3: Spatial locations of measured values of the quantity

10.1.8 Solution: 4

Iα(u) = 1 if z(u)≤ 31

Iα(u) = 0 if z(u) > 31

γ∗(h) =
1

2N(h) ∑
ui−u j=h

(Iα(ui)− Iα(u j))2
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1. The variogramh = 1 andh = 2 in thex direction:

γ∗x(1) =
1

2·3
(0+0+12) =

1
6

γ∗x(2) =
1
2
(12) =

1
2

2. in they direction

γ∗(1) =
1

2·3
(12 +12 +0) =

1
3

γ∗y(2) =
1
2
(1) =

1
2

3. without taking the direction into account:

γ∗(1) =
1

2·6
(0+0+12 +12 +0+12) =

1
4

γ∗(2) =
1

2·2
(12 +12) =

1
2

10.2 Ordinary Kriging

10.2.1 Question: 1

The sketch in figure 10.4 shows 4 measurementsZ(u) for pointsu = −2,−1,1

and 2, ordered in a straight line. Write down the equations of an ordinary kriging

system for an estimationZ∗ at the pointu= 0. For the variogram take the function

γ(h) = h for a distanceh. (Hint: it is not necessary to solve the equations!)
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- u
−2

Z = 4.0

−1

Z = 3.0

0 1

Z = 1.5

2

Z = 0.5

Figure 10.4: A sketch showing 4 measurementsZ(u) for pointsu = −2,−1,1,

and 2 ordered in a straight line.

10.2.2 Solution: 1

The kriging - system for ordinary kriging is

n

∑
j=1

λ j · γ(ui −u j)+µ= γ(ui −u), i = 1, . . . ,n

n

∑
j=1

λ j = 1

with kriging weightsλi for the measurement atui , i = 1, ...,n. In this case,

with u1 =−2, u2 =−1, u3 = 1, u4 = 2 and the estimation ofu = 0, the symmetry

of the locations leads to the symmetry of the weights so that:

λ1 = λ4, λ2 = λ3

Therefore the equation system is reduced to 3 equations (i = 1,2), because the

equations fori = 1,4 andi = 2,3 are identical:

i = 1: λ1 · γ(0)+λ2 · γ(1)+λ2 · γ(3)+λ1 · γ(4)+µ= γ(2)

i = 2: λ1 · γ(1)+λ2 · γ(0)+λ2 · γ(2)+λ1 · γ(3)+µ= γ(1)

2·λ1 +2·λ2 = 1
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And by using the variogram function:

i =1: λ1 ·0+λ2 ·1+λ2 ·3+λ1 ·4+µ= 2

i = 2: λ1 ·1+λ2 ·0+λ2 ·2+λ1 ·3+µ= 1

2·λ1 +2·λ2 = 1

i = 1: λ1 ·4+λ2 ·4+µ= 2

i = 2: λ1 ·4+λ2 ·2+µ= 1

2·λ1 +2·λ2 = 1

The kriging system without using the symmetry is:

i = 1: λ1 ·0+λ2 ·1+λ3 ·3+λ4 ·4+µ= 2

i = 2: λ1 ·1+λ2 ·0+λ3 ·2+λ4 ·3+µ= 1

i = 3: λ1 ·3+λ2 ·2+λ3 ·0+λ4 ·1+µ= 1

i = 4: λ1 ·4+λ2 ·3+λ3 ·1+λ4 ·0+µ= 2

λ1 +λ2 +λ3 +λ4 = 1

123



The last equation leads toλ2 = 0.5− λ1, adding this to the previous equations

leads to:

i = 1: λ1 ·4+(0.5−λ1) ·4+µ= 2+µ= 2

i = 2: λ1 ·4+(0.5−λ1) ·2+µ= λ1 ·2+1+µ= 1

µ= 0 , λ1 = 0 , λ2 = 0.5

The kriging weights are 0.5 for u2 andu3 and 0 foru1 andu4. The estimation

therefore isZ(u)=2.25.

10.2.3 Question: 2

The figure 10.5 presents a set of measurements of a parameter (ex. nitrate in

mg/kg in the soil of a small field) on a regular grid of 1m cell size. Fields marked

with ”x” are points without measurements:

Use the data given in the figure for the following calculations:

1. Write down the equations of an ordinary kriging system for the point (2,3)

using only the directly neighbouring points. For the variogram function take

γ(h) = 4h. (Hint: it is not necessary to solve the equations!)

2. When using simple kriging instead of ordinary kriging, what kind of addi-

tional information do you need?

10.2.4 Solution: 2

1. The kriging - system for ordinary kriging is

n

∑
j=1

λ j · γ(ui −u j)+µ= γ(ui −u), i = 1, . . . ,n
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Figure 10.5: A set of measurements

n

∑
j=1

λ j = 1

with kriging weightsλi for the measurement atui , i = 1, ..,n. In this case the

neighbouring points of(2,3) = u are: (1,3) = u1,(2,2) = u2, (2,4) = u3,

(3,3) = u4

The distances in this configuration are:

1m (x andy direction) withγ(1) = 4,

2m (x andy direction) withγ(2) = 8,

1.41m (diagonal, ex. (2,2) to (3,3)) withγ(1.41) = 5.64

The kriging system without using the symmetry is:
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i = 1: λ1 ·0+λ2 · γ(1.41)+λ3 · γ(1.41)+λ4 · γ(2)+µ= γ(1)

i = 2: λ1 · γ(1.41)+λ2 ·0+λ3 · γ(2)+λ4 · γ(1.41)+µ= γ(1)

i = 3: λ1 · γ(1.41)+λ2 · γ(2)+λ3 ·0+λ4 · γ(1.41)+µ= γ(1)

i = 4: λ1 · γ(2)+λ2 · γ(1.41)+λ3 · γ(1.41)+λ4 ·0+µ= γ(1)

λ1 +λ2 +λ3 +λ4 = 1

and by evaluating the variogramγ(h):

i = 1: λ1 ·0+λ2 ·5.64+λ3 ·5.64+λ4 ·8+µ= 1 (1)

i = 2: λ1 ·5.64+λ2 ·0+λ3 ·8+λ4 ·5.64+µ= 1 (2)

i = 3: λ1 ·5.64+λ2 ·8+λ3 ·0+λ4 ·5.64+µ= 1 (3)

i = 4: λ1 ·8+λ2 ·5.64+λ3 ·5.64+λ4 ·0+µ= 1 (4)

λ1 +λ2 +λ3 +λ4 = 1(5)

Calculating the differences between equation (2)-(3) and (1)-(4) leads to:

(2)-(3) : λ2 = λ3

(1)-(4): λ1 = λ4

evaluating these results in (1) and (2) and calculating the difference:

(1)-(2): λ2 = λ1
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with (5) : λ4 = λ3 = λ2 = λ1 = 0.25

The kriging weights are 0.25 for all points. The estimation is therefore

Z(u) = 14.25.

The fast way to solution (but not to the kriging equations): By looking at the

symmetry of the points, it can be concluded that the system is invariant for

rotations of 90◦. Because the variogram contains no anisotropy, the solution

must also be invariant for rotation. Therefore the solution is: equal weights

for all points!

2. For the application of simple kriging, the mean value of underlying process

m(u) at locationu hast to be known. Ifm(u) is assumed as constant over the

domain,m(u) can be calculated as mean of the data.

10.2.5 Question: 3

The table 10.1 displays measurements of groundwater parametersZ(u) for

pointsu ordered in a straight line.

(a) Write down the equations of an external drift kriging system for an

estimation ofZ∗ of chloride at the pointu = 2 assuming that chloride

is linearly related to the electric conductivity. For the variogram take

the functionγ(h) = 3
2h for a distanceh. (hint: it is not necessary to

solve the equations!)

(b) What other methods can be used for the solution, if you consider the

dependency of chloride on electric conductivity? Please mention the

steps do you have to follow for these procedures?
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Location (u) Chloride[mg/l] Electric Conductivity[mS/m]

0 19.4 20

1 22.2 22

2 – 21

3 23.6 24

4 24.8 25

Table 10.1: Measurements of groundwater parametersZ(u) for pointsu ordered

in a straight line

10.2.6 Solution: 3

(a) The equations of external drift kriging are as follows:

I

∑
j=1

λ jγ(ui −u j)+µ1 +µ2Y(ui) = γ(ui −u) i = 1, . . . , I

I

∑
j=1

λ j = 1

I

∑
j=1

λ jY(u j) = Y(u)

Applying these formulas for this specific case leads to 6 equations, the

locations are:u1=0, u2=1, u3=3, u4=4 andu=2:

i = 1: λ1γ(0)+λ2γ(1)+λ3γ(3)+λ4γ(4)+µ1 +µ2Y(0) = γ(2)
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i = 2: λ1γ(1)+λ2γ(0)+λ3γ(2)+λ4γ(3)+µ1 +µ2Y(1) = γ(1)

i = 3: λ1γ(3)+λ2γ(2)+λ3γ(0)+λ4γ(1)+µ1 +µ2Y(3) = γ(1)

i = 4: λ1γ(4)+λ2γ(3)+λ3γ(1)+λ4γ(0)+µ1 +µ2Y(4) = γ(2)

λ1 +λ2 +λ3 +λ4 = 1

λ1Y(0)+λ2Y(1)+λ3Y(3)+λ4Y(4) = Y(2)

Inserting the variogramγ(h) = 3
2h, and the values of the function Y

(electric conductivity) gives:

i = 1: 1.5·λ2 +4.5·λ3 +6·λ4 +µ1 +20·µ2 = 3

i = 2: 1.5·λ1 +3·λ3 +4.5·λ4 +µ1 +22·µ2 = 1.5

i = 3: 4.5·λ1 +3·λ2 +1.5·λ4 +µ1 +24·µ2 = 1.5

i = 4: 6·λ1 +4.5·λ2 +1.5·λ3 +µ1 +25·µ2 = 3

λ1 +λ2 +λ3 +λ4 = 1

20·λ1 +22·λ2 +24·λ3 +25·λ4 = 21
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(b) Other methods to use for this problem:

Cokriging:

When applying cokriging not only variograms of both parameters have

to be estimated, but also covariograms defining the relation between

both parameters. The advantage of cokriging is that it is not necessary

to have a measurement of the second parameter at the location of esti-

mation.

Universal Kriging:

Universal kriging includes an explicit calculation of the external drift

(which is not necessarily a linear function!). Usually the variogram

has to be calculated iteratively using the residuals of the external drift

calculated before.

Instrinsic Random Functions of Order k:

For IRF-k a generalized covariance has to be calculated. Assuming a

linear trend IRF-1 (first order) is a suitable choice.

10.3 Short Questions

Please answer the following questions:

10.3.1 Question: 1

(a) Explain the role of the block-size on the estimation variance, when

utilising block kriging.

(b) Two different measurement methods are used for a certain param-

eter of groundwater quality making more than one measurement at
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each point. Method A delivers locally constant values at all locations,

whereas Method B has an internal error producing local variances in

the measured data at each point. Local mean values of Method B are

the same of Method A. How do the variograms calculated for Method

A and Method B differ from each other?

10.3.2 Solution: 1

(a) The estimation variance of block kriging is given by the formula:

σ2(V) =−γ(V,V)−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui ,V)

The last term is the internal variance of the block. By increasing the

size of the block, the internal variance increases as well, and this de-

creases the estimation variance. Therefore the bigger the size of the

blocks, the smaller the estimation variance will be.

(b) The variogram of Method B is the one of Method A with an added

term cs corresponding to the internal error variances (depending on

the formulas used for the estimation of variance and variogram, these

terms are not necessarily equal.) In case of Variogram A, there is no

nugget effect, the Variogram B will have a nugget effect ofcs.

10.3.3 Question: 2

(a) Consider Simple Updating Kriging (SUK) and External Drift Kriging

(EDK) for interpolation. What kind of data do you need to apply these

methods?

(b) Based on the measured point-data, an interpolation and a simulation

are done to plot a map for each. What do you expect to observe, when
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you consider the variograms calculated with these maps (interpolation

vs. simulation)? What kind of relations can you distinguish between

the variogram calculated and the variogram obtained from the original

dataset?

(c) When do you apply indicator kriging? Please define the cases where

indicator kriging can be applied and such where indicator kriging must

be applied!

10.3.4 Solution: 2

(a) Simple Updating Kriging (SUK) and External Drift Kriging (EDK)

both need additional information which has to be known at the points

of data and for the points of interpolation. For SUK, this information

has to be categorical (ex. discrete class-number), for EDK a linearly

related second variable is needed.

(b) The interpolation-variogram should have smaller values than the simulation-

variogram. The simulation-variogram should be identical to the vari-

ogram of the original dataset.

(c) Categorical variables: Indicator Kriging (IK) must be applied.

Highly skewed distribution of parameter:Applying IK to different

thresholds can deliver more plausible results than the conventional

kriging methods.

Detection limit problems:If a high number of measurements is below

the detection limit, IK should be applied. If the percentage is signifi-

cantly high (appr. 10% or higher) only IK can deliver plausible results.

Below 10%:A substitution of measurements below detection limit is
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possible.

Below 5%:IK is not necessary.
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