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Spatial Stochastic Process/ Spatial Random Field**

A spatial stochastic process is a family of random variables

{Z(s) : s ∈ D}

indexed by spatial locastions s ∈ D.

D: Spatial domain (the geographical region in which
observations could made)

Z(s): Random variable representing the quantity that you
measure at location s
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Temporal Stochastic Process

A collection of random variables {Xt : t ∈ T} or {X(t) : t ∈ T}
where T is an index set. For each t ∈ T, Xt or X(t) isa random
variable.
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Three types of spatial data

1. Geostatistical processes

Example: Maximum temperature in Colombo District

2. Areal processes

Example: Dengue cases in each district in Sri Lanka

3. Point processes

Example: Location of dengue patients household addresses
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Geostatistical processes

A geostatistical process is the stochastic process

{Z(s) : s ∈ D}

where D is a fixed subset of the p-dimensional space Rp. The
locations s at which data could occur vary continuously over
D. In other words, it is possible to measure at infinitely many
locations across the spatial domain D.
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Areal unit process/ Lattice process

The spatial domain D is partitioned into n disjoint areal units
which are denoted by

D = {B1, B2, ..., Bn}

.

The areal stochastic process is denoted by

Z = {Z(B1), Z(B2), ..., Z(Bn)}

.
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Alternative formulation of areal unit processes

Let s1, s2...., sn be the centroids of B1, B2, ..., Bn. THen the
areal stochastic process is denoted by

Z = {Z(s1), Z(s2), ...Z(sn)}.
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Point Stochastic Process

Let
D = {A1, A2, ...An}

, where n denotes the number of points in D. Then the
stochastic process is

Z = {Z(A1), Z(A2), ...Z(An)}.
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Goals of spatial analysis

• To find a statistical model that adequately explains the
spatial dependency structure and trends, etc.

• Interpolation
• To make inferences
• To model the relationship between covariates and

response
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Geostatistical stochastic process

A geostatistical process is the stochastic process

{Z(s) : s ∈ D}

where D is a fixed subset of the p-dimensional space Rp. The
locations s at which data could occur vary continuously over
D. In other words, it is possible to measure at infinitely many
locations across the spatial domain D.

In this course, we focus on p = 2. That is, a location
s = (s1, s2). For example, s1 and s2 could be longitude and
latitude.
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Meuse river data set

This data set gives locations and topsoil heavy metal
concentrations, along with a number of soil and landscape
variables at the observation locations, collected in a flood plain
of the river Meuse, near the village of Stein (NL).

x y cadmium copper lead zinc elev dist om ffreq soil lime landuse dist.m

181072 333611 11.7 85 299 1022 7.909 0.0013580 13.6 1 1 1 Ah 50
181025 333558 8.6 81 277 1141 6.983 0.0122243 14.0 1 1 1 Ah 30
181165 333537 6.5 68 199 640 7.800 0.1030290 13.0 1 1 1 Ah 150
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Mean function

The mean function of {Z(s) : s ∈ D} is

Continuous random variable

µ(s) = E[Z(s)] =
∫ ∞

−∞
zfZz(s)dz

where fZz(s) is the probability density function of Z(s).

Discrete random variable

µ(s) = E[Z(s)] =
∑
zi∈S

zifZz(s)

where fZz(s) is the probability mass function for Z(s).
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Autocovariance function

C(s, t) = Cov[Z(s), Z(t)]

Measures the linear dependence between Z(s) and Z(t).
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Variance function

V[Z(s)] = C(s, s) = ν2(s)
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Theorems

1. The autocovariance function is symmetric in its
arguments. That is, C(s, t) = C(t, s) for each s, t ∈ D.

2. The autocovariance function C(s, t) is a nonnegative
definite function.
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Autocovariance function

ρ(s, t) = Corr[Z(s), Z(t)] = C(s, t)√
C(s, s)C(t, t)

Properties of autocorrelation function: In class
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White noise process

1. µ(s) = µ for all s ∈ D
2.

C(s, t) =

τ 2, if s = t.
0, otherwise.

(1)
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Strictly Stationary

A geostatistical process {Z(s) : s ∈ D} is strictly stationary if

f(Z(s1), ..., Z(sn)) = f(Z(s1 + h), ..., Z(sn + h))

for any displacement vector h and any set of n locations
{s1, ..., sn}. This means, the joint distribution of a set of
random variables are unaffected by spatial shifts.
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Weakly stationarity

1. E[Z(s)] = µ(s) = µ for some finite constant µ which does
not depend on s.

2. Cov[Z(s), Z(s+h)] = C(s, s+h) = C(h)

Here h is called the spatial lag or displacement.

Note: Strictly stationary implies it is weakly stationary, but the
converse is not true in general (unless Z(s) is a Gaussian
process).
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Isotropic

This means that the correlation between any two observations
depends only on the distance between those locations and not
on their relative orientation. There is no directional influence.
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Spatial Continuity

Spatial continuity: Correlation between values over distance
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No spatial continuity

Random values at each location
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Perfect spatial continuity
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Variogram

• Used to check if there is any spatial autocorrelation in the
data.
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Semi-variogram

γ(s, t) = 1
2Var[z(s) − z(t)]
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Task

Show that, when the process has constant mean µ(s) = µ

γ(s, t) = 1
2E[z(s) − z(t)]2

Proof: in-class
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Variogram calculation

γ(h) = 1
2N(h)

N(h)∑
i=1

(Z(si) − Z(si + h))2
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Important results

γ(h) = ν2 − C(h)

Proof: In-class
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