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1 Introduction

Linear models attempt to explain a time series as a linear combination of external variables

and/or internal variables (lagged values of error terms or observed values). These lead to the

several possible models, such as AR, MA, ARMA, ARMA, SARIMA, ARFIMA and so on. The

most representative of these are listed below.

1.1 Models for stationary time series

• AR models

• MA models

• ARMA models

1.2 Models for nonstationary time series

• ARIMA models

• SARIMA models

First, we will look at the theoretical properties of these models.

2 Autoregressive (AR) models

2.1 Properties of AR(1) model

Consider the following AR(1) model.

Yt = φ0 + φ1Yt−1 + εt (1)

where εt is assumed to be a white noise process with mean zero and variance σ2.

2.1.1 Mean

Assuming that the series is weak stationary, we have E(Yt) = µ, Var(Yt) = γ0, and

Cov(Yt, Yt−k) = γk, where µ and γ0 are constants. Given that εt is a white noise, we have

E(εt) = 0. The mean of AR(1) process can be computed as follows:

E(Yt) = E(φ0 + φ1Yt−1)

= E(φ0) + E(φ1Yt−1)

= φ0 + φ1E(Yt−1).
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Under the stationarity condition, E(Yt) = E(Yt−1) = µ. Thus we get

µ = φ0 + φ1µ.

Solving for µ yields

E(Yt) = µ =
φ0

1− φ1
. (2)

The results has two constraints for Yt. First, the mean of Yt exists if φ1 6= 1. The mean of Yt is

zero if and only if φ0 = 0.

2.1.2 Variance and the stationary condition of AR (1) process

First take variance of both sides of Equation (1)

Var(Yt) = Var(φ0 + φ1Yt−1 + εt)

The Yt−1 occurred before time t. The εt does not depend on any past observation. Hence,

cov(Yt−1, εt) = 0. Furthermore, εt is a white noise. This gives

Var(Yt) = φ2
1Var(Yt−1) + σ2.

Under the stationarity condition, Var(Yt) = Var(Yt−1). Hence,

Var(Yt) =
σ2

1− φ2
1

.

provided that φ2
1 < 1 or |φ1| < 1 (The variance of a random variable is bounded and non-

negative). The necessary and sufficient condition for the AR(1) model in Equation (1) to be

weakly stationary is |φ1| < 1. This condition is equivalent to saying that the root of 1− φ1B = 0

must lie outside the unit circle. This can be explained as below

Using the backshift notation we can write AR(1) process as

Yt = φ0 + φ1BYt + εt.
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Then we get

(1− φ1B)Yt = φ0 + εt.

The AR(1) process is said to be stationary if the roots of (1− φ1B) = 0 lie outside the unit circle.

2.1.3 Covariance

The covariance γk = Cov(Yt, Yt−k) is called the lag-k autocovariance of Yt. The two main

properties of γk: (a) γ0 = Var(Yt) and (b) γ−k = γk.

The lag-k autocovariance of Yt is

γk = Cov(Yt, Yt−k)

= E[(Yt − µ)(Yt−k − µ)]

= E[YtYt−k −Ytµ− µYt−k + µ2]

= E(YtYt−k)− µ2.

(3)

Now we have

E(YtYt−k) = γk + µ2 (4)

2.1.4 Autocorrelation function of an AR(1) process

To derive autocorrelation function of an AR(1) process we first multiply both sides of Equation

(1) by Yt−k and take expected values:

E(YtYt−k) = φ0E(Yt−k) + φ1E(Yt−1Yt−k) + E(εtYt−k)

Since εt and Yt−k are independent and using the results in Equation (4)

γk + µ2 = φ0µ + φ1(γk−1 + µ2)

Substituting the results in Equation (2) to Equation (4) we get

γk = φ1γk−1. (5)
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The autocorrelation function, ρk, is defined as

ρk =
γk

γ0

.

Setting k = 1, we get γ1 = φ1γ0. Hence,

ρ1 = φ1.

Similarly with k = 2, γ2 = φ1γ1. Dividing both sides by γ0 and substituting with ρ1 = φ1 we get

ρ2 = φ2
1.

Now it is easy to see that in general

ρk =
γk

γ0
= φk

1 (6)

for k = 0, 1, 2, 3, ....

Since |φ1| < 1, the autocorrelation function is an exponentially decreasing as the number of lags

k increases. There are two features in the ACF of AR(1) process depending on the sign of φ1.

They are,

1. If 0 < φ1 < 1, all correlations are positive.

2. if −1 < φ1 < 0, the lag 1 autocorrelation is negative (ρ1 = φ1) and the signs of successive

autocorrelations alternate from positive to negative with their magnitudes decreasing

exponentially.

2.2 Properties of AR(2) model

Now consider a second-order autoregressive process (AR(2))

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + εt. (7)

2.2.1 Mean

Question 1: Using the same technique as that of the AR(1), show that
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E(Yt) = µ =
φ0

1− φ1 − φ2

and the mean of Yt exists if φ1 + φ2 6= 1.

2.2.2 Variance

Question 2: Show that

Var(Yt) =
(1− φ2)σ2

(1 + φ2)((1 + φ2)2 − φ2
1)

.

Here is a guide to the solution

Start with

Var(Yt) = Var(φ0 + φ1Yt−1 + φ2Yt−2 + εt)

Solve it until you obtain the Eq. (a) as shown below.

γ0(1− φ2
1 − φ2

2) = 2φ1φ2γ1 + σ2. (a)

Next multiply both sides of Equation (7) by Yt−1 and obtain an expression for γ1. Let’s call this

Eq. (b).

Solve Eq. (a) and (b) for γ0.

2.2.3 Stationarity of AR(2) process

To discuss the stationarity condition of the AR(2) process we use the roots of the characteristic

polynomial. Here is the illustration.

Using the backshift notation we can write AR(2) process as

Yt = φ0 + φ1BYt + φ2B2Yt + εt.

Furthermore, we get

(1− φ1B− φ2B2)Yt = φ0 + εt.

The characteristic polynomial of AR(2) process is
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Φ(B) = 1− φ1B− φ2B2.

and the corresponding AR characteristic equation

1− φ1B− φ2B2 = 0.

For stationarity, the roots of AR characteristic equation must lie outside the unit circle. The two

roots of the AR characteristic equation are

φ1 ±
√

φ2
1 + 4φ2

−2φ2

Using algebraic manipulation, we can show that these roots will exceed 1 in modulus if and

only if simultaneously φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. This is called the stationarity

condition of AR(2) process.

2.2.4 Autocorrelation function of an AR(2) process

To derive autocorrelation function of an AR(2) process we first multiply both sides of Equation

(7) by Yt−k and take expected values:

E(YtYt−k) = E(φ0Yt−k + θ1Yt−1Yt−k + θ2Yt−2Yt−k) + εtYt−k (8)

= φ0E(Yt−k) + φ1E(Yt−1Yt−k) + φ2E(Yt−2Yt−k) + E(εtYt−k). (9)

Using the independence between εt and Yt−1, E(εtYt−k) = 0 and the results in Equation (4) (This

is valid for AR(2)) we have

γk + µ2 = γ0µ + θ1(γk−1 + µ2) + φ2(γk−2 + µ2).

(Note that E(Xt−1Xt−k) = E(Xt−1X(t−1)−(k−1) = γk−1))

Solving for γk we get
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γk = φ1γk−1 + φ2γk−2. (10)

By dividing the both sides of Equation (10) by γ0, we have

ρk = φ1ρk−1 + φ2ρk−2. (11)

for k > 0.

Setting k = 1 and using ρ0 = 1 and ρ−1 = ρ1, we get the Yule-Walker equation for AR(2)

process.

ρ1 = φ1 + φ2ρ1

or

ρ1 =
φ1

1− φ2
.

Similarly, we can show that

ρ2 =
φ2(1− φ2) + φ2

1
(1− φ2)

.

2.3 Properties of AR(p) model

The pth order autoregressive model can be written as

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt. (12)

The AR characteristic equation is

1− φ1B− φ2B2 − ...− φpBp = 0.
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For stationarity of AR(p) process, the p roots of the AR characteristic must lie outside the unit

circle.

2.3.1 Mean

Question 3: Find E(Yt) of AR(p) process.

2.3.2 Variance

Question 4: Find Var(Yt) of AR(p) process.

2.3.3 Autocorrelation function (ACF) of an AR(p) process

Question 5: Similar to the results in Equation (11) for AR(2) process, obtain the following

recursive relationship for AR(p).

ρk = φ1ρk−1 + φ2ρk−2 + ... + φpρk−p. (13)

Setting k = 1, 2, ..., p into Equation (13) and using ρ0 = 1 and ρ−k = ρk, we get the Yule-Walker

equations for AR(p) process

ρ1 = φ1 + φ2ρ1 + ... + φpρp−1

ρ2 = φ1ρ1 + φ2 + ... + φpρp−2

...

ρp = φ1ρp−1 + φ2ρp−2 + ... + φp

(14)

The Yule-Walker equations in (14) can be written in matrix form as below.



ρ1

ρ2

.

.

.

ρp


=



1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

. . . . . . .

. . . . . . .

. . . . . . .

ρp−1 ρp−2 ρp−3 . . . 1





φ1

φ2

.

.

.

φp


or

ρp = Ppφ.
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where,

ρp =



ρ1

ρ2

.

.

.

ρp


, Pp =



1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

. . . . . . .

. . . . . . .

. . . . . . .

ρp−1 ρp−2 ρp−3 . . . 1


, φ =



φ1

φ2

.

.

.

φp


The parameters can be estimated using

φ = P−1
p ρp.

Question 6: Obtain the parameters of an AR(3) process whose first autocorrelations are ρ1 = 0.9;

ρ2 = 0.9; ρ3 = 0.5. Is the process stationary?

2.4 The partial autocorrelation function (PACF)

Let φki, the jth coefficient in an AR(k) model. Then, φkk is the last coefficient. From Equation

(13), the φkj satisfy the set of equations

ρj = φk1ρj−1 + ... + φk(k−1)ρj−k+1 + φkkρj−k, (15)

for j = 1, 2, ...k, leading to the Yule-Walker equations which may be written



ρ1

ρ2

.

.

.

ρk


=



1 ρ1 ρ2 . . . ρk−1

ρ1 1 ρ1 . . . ρk−2

. . . . . . .

. . . . . . .

. . . . . . .

ρk−1 ρk−2 ρk−3 . . . 1





φk1

φk2

.

.

.

φkk


(16)

or

ρk = Pkφk.
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where

ρk =



ρ1

ρ2

.

.

.

ρk


, Pk =



1 ρ1 ρ2 . . . ρk−1

ρ1 1 ρ1 . . . ρk−2

. . . . . . .

. . . . . . .

. . . . . . .

ρk−1 ρk−2 ρk−3 . . . 1


, φk =



φk1

φk2

.

.

.

φkk


For each k, we compute the coefficients φkk. Solving the equations for k = 1, 2, 3... successively,

we obtain

For k = 1,

φ11 = ρ1. (17)

For k = 2,

φ22 =

 1 ρ2

ρ1 ρ2


 1 ρ1

ρ1 1

 =
ρ2 − ρ2

1

1− ρ2
1

(18)

For k = 3,

φ33 =


1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3




1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1


(19)

The quantity φkk is called the partial autocorrelation at lag k and can be defined as

φkk = Corr(YtYt−k|Yt−1, Yt−2, ..., Yt−k+1).
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The partial autocorrelation between Yt and Yt−k is the correlation between Yt and Yt−k after

removing the effect of the intermediate variables Yt−1, Yt−2, ..., Yt−k+1.

In general the determinant in the numerator of Equations (17), (18) and (19) has the same

elements as that in the denominator, but replacing the last column with ρk = (ρ1, ρ2, ...ρk).

2.4.1 PACF for AR(1) models

From Equation (6) we have

ρk = φk
1 for k = 0, 1, 2, 3, ...

Hence, for k = 1, the first partial autocorrelation coefficient is

φ11 = ρ1 = φ1.

From (18) for k = 2, the second partial autocorrelation coefficient is

φ22 =
ρ2 − ρ2

1

1− ρ2
1
=

φ2
1 − φ2

1

1− φ2
1

= 0

.

Similarly, for AR(1) we can show that φkk = 0 for all k > 0. Hence, for AR(1) process the partial

autocorrelation is non-zero for lag 1 which is the order of the process, but is zero for lags beyond

the order 1.

2.4.2 PACF for AR(2) model

Question 7: For AR(2) process show that φkk = 0 for all k > 2. Sketch the PACF of AR(2)

process.

2.4.3 PACF for AR(P) model

In general for AR(p) precess, the partial autocorrelation function φkk is non-zero for k less than

or equal to p (the order of the process) and zero for all k greater than p. In other words, the

partial autocorrelation function of a AR(p) process has a cut-off after lag p.

3 Moving average (MA) models

We first derive the properties of MA(1) and MA(2) models and then give the results for the

general MA(q) model.
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3.1 Properties of MA(1) model

The general form for MA(1) model is

Yt = θ0 + θ1εt−1 + εt (20)

where θ0 is a constant and εt is a white noise series.

3.1.1 Mean

Question 8: Show that E(Yt) = θ0.

3.1.2 Variance

Question 9: Show that Var(Yt) = (1 + θ2
1)σ

2.

We can see both mean and variance are time-invariant. MA models are finite linear combinations

of a white noise sequence. Hence, MA processes are always weakly stationary.

3.1.3 Autocorrelation function of an MA(1) process

3.1.3.1 Method 1 To obtain the autocorrelation function of MA(1), we first multiply both

sides of Equation (20) by Yt−k and take the expectation.

E[YtYt−k] = E[θ0Yt−k + θ1εt−1Yt−k + εtYt−k]

= θ0E(Yt−k) + θ1E(εt−1Yt−k) + E(εtYt−k)
(21)

Using the independence between εt and Yt−k (future error and past observation) E(εtYt−k) = 0.

Now we have

E[YtYt−k] = θ2
0 + θ1E(εt−1Yt−k) (22)

Now let’s obtain an expression for E[YtYt−k].

γk = Cov(Yt, Yt−k)

= E[(Yt − θ0)(Yt−k − θ0)]

= E[YtYt−k −Ytθ0 − θ0Yt−k + θ2
0 ]

= E(YtYt−k)− θ2
0 .

(23)

Now we have
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E(YtYt−k) = γk + θ2
0 . (24)

Using the Equations (22) and (24) we have

γk = θ2
0 − θ2

0 + θ1E(εt−1Yt−k). (25)

Now let’s consider the case k = 1.

γ1 = θ2
0 − θ2

0 + θ1E(εt−1Yt−1) (26)

Today’s error and today’s value are dependent. Hence, E(εt−1Yt−1) 6= 0. We first need to identify

E(εt−1Yt−1).

E(εt−1Yt−1) = E(θ0εt−1 + θ1εt−2εt−1 + ε2
t−1) (27)

Since, {εt} is a white noise process E(εt−1) = 0 and E(εt−2εt−1) = 0. Hence, we have

E(εt−1Yt−1) = E(ε2
t−1) = σ2 (28)

Substituting (28) in (26) we get

γ1 = θ1σ2

.

Furthermore, γ0 = Var(Yt) = (1 + θ2
1)σ

2. Hence

ρ1 =
γ1

γ0
=

θ

1 + θ2
1

.

When k = 2, from Equation (26) and E(εt−1Yk−2) = 0 (future error and past observation) we get

γ2 = 0. Hence ρ2 = 0. Similarly, we can show that

γk = ρk = 0
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for all k ≥ 2.

We can see that the ACF of MA(1) process is zero, beyond the order of 1 of the process.

3.1.3.2 Method 2: By using the definition of covariance

γ1 = Cov(Yt, Yt−1) = Cov(εt + θ1εt−1 + θ0, εt−1 + θ1εt−2 + θ0)

= Cov(θ1εt−1, εt−1)

= θ1σ2.

(29)

γ2 = Cov(Yt, Yt−2) = Cov(εt + θ1εt−1 + θ0, εt−2 + θ1εt−3 + θ0)

= 0.
(30)

We have γ0 = σ2(1 + θ2
1), (Using the variance).

Hence

ρ1 =
γ1

γ0
=

θ1

1 + θ2
1

.

Similarly we can show γk = ρk = 0 for all k ≥ 2.

3.2 Properties of MA(2) model

An MA(2) model is in the form

Yt = θ0 + θ1εt−1 + θ2εt−2 + εt (31)

where θ0 is a constant and εt is a white noise series.

3.2.1 Mean

Question 10: Show that E(Yt) = θ0.

3.2.2 Variance

Question 11: Show that Var(Yt) = σ2(1 + θ2
1 + θ2

2).

3.2.3 Autocorrelation function of an MA(2) process

Question 12: For MA(2) process show that,
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ρ1 =
θ1(1 + θ2)

1 + θ2
1 + θ2

2
,

ρ2 =
θ2

1 + θ2
1 + θ2

2
,

and ρk = 0 for all k ≥ 3.

3.3 Properties of MA(q) model

Yt = θ0 + θ1εt−1 + θ2εt−2 + ... + θqεt−q + εt (32)

where θ0 is a constant and εt is a white noise series.

3.3.1 Mean

Question 13: Show that the constant term of an MA model is the mean of the series (i.e.

E(Yt) = θ0).

3.3.2 Variance

Question 14: Show that the variance of an MA model is

Var(Yt) = (1 + θ2
1 + θ2

2 + ... + θ2
q)σ

2.

3.3.3 Autocorrelation function of an MA(q) process

Question 15: Show that the autocorrelation function of a MA(q) process is zero, beyond the

order of q of the process. In other words, the autocorrelation function of a moving average

process has a cutoff after lag q.

3.4 Partial autocorrelation function of an MA(q) process

The partial autocorrelation functions for MA(q) models behave very much like the autocorrela-

tion functions of AR(p) models. The PACF of MA models decays exponentially to zero, rather

like ACF for AR model.

4 Dual relation between AR and MA process

Dual relation 1

First we consider the relation AR(p) <–> MA(∞)
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Let AR(p) be a stationary AR model with order p. Then,

Yt = φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt,

where εt ∼WN(0, σ2).

Using the backshift operator we can write the AR(p) model as

(1− φ1B− φ2B2 − ...− φpBP)Yt = εt.

Then

φ(B)Yt = εt,

where φ(B) = 1− φ1B− φ2B2 − ...− φpBp. Furthermore, Yt can be written as infinite sum of

previous ε’s as below

Yt = φ−1(B)εt,

where φ(B)ψ(B) = 1 and ψ(B) = 1 + Ψ1B + ψ2B2 + ... Then

Yt = ψ(B)εt.

This is a representation of MA(∞) process.

Next, we consider the relation MA(q) <–> AR(∞)

Let MA(q) be invertible moving average process

Yt = εt + θtεt−1 + θ2εt−2 + ... + θpεt−q.

Using the backshift operator we can write the MA(q) process as

Yt = (1 + θ1B + θ2B2 − ... + θqBq)εt.

Then,
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Yt = θ(B)εt,

where θ(B) = 1 + θ1B + θ2B2 + ... + θ1Bq. Hence, for an invertible moving average process, Yt

can be represented as a finite weighted sum of previous error terms, ε. Furthermore, since the

process is invertible εt can be represented as an infinite weighted sum of previous Y’s as below

εt = θ−1(B)Yt,

where π(B)θ(B) = 1, and π(B) = 1 + π1B + πB2 + .... Hence,

εt = π(B)Yt.

This is an representation of a AR(∞) process.

Dual relation 2

An MA(q) process has an ACF function that is zero beyond lag q and its PACF is decays

exponentially to 0. Consequently, an AR(p) process has an PACF that is zero beyond lag-p, but

its ACF decays exponentially to 0.

Dual relation 3

For an AR(p) process the roots of φ(B) = 0 must lie outside the unit circle to satisfy the condition

of stationarity. However, the parameters of the AR(p) are not required to satisfy any conditions

to ensure invertibility. Conversely, the parameters of the MA process are not required to satisfy

any condition to ensure stationarity. However, to ensure the condition of invertibility, the roots

of θ(B) = 0 must lie outside the unit circle.

5 Autoregressive and Moving-average (ARMA) models

current value = linear combination of past values + linear combination of past error + current

error

The ARMA(p, q) can be written as

Yt = c + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + θ1εt−1 + θ2εt−2 + ... + θqεt−q + εt,

where {εt} is a white noise process.
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Using the back shift operator

φ(B)Yt = θ(B)εt,

where φ(.) and θ(.) are the pth and qth degree polynomials,

φ(B) = 1− φ1ε− ...− φpεp,

and

θ(B) = 1 + θ1ε + ... + θqεq.

5.1 Stationary condition

Roots of

φ(B) = 0

lie outside the unit circle.

5.2 Invertible condition

Roots of

θ(B) = 0

lie outside the unit circle.

5.3 Autocorrelation function and Partial autocorrelation function

The ACF of an ARMA model exhibits a pattern similar to that of an AR model. The PACF of

ARMA process behaves like the PACF of a MA process. Hence, the ACF and PACF are not

informative in determining the order of an ARMA model.

6 Theoretical ACF and PACF for AR, MA and ARMA models

Theoretical autocorrelation coefficients for some of the more common AR, MA and ARMA

models are shown here. However, the ACF and PACF calculated from the data will not exactly

match any set of theoretical ACF and PACF because the ACF and PACF calculated from the data

are subject to sampling variation.
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6.1 AR models

Figure 1: ACF and PACF of AR(1) and AR(2) models
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6.2 MA models

Figure 2: ACF and PACF of MA(1) and MA(2) models
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6.3 ARMA models

Figure 3: ACF and PACF of ARMA(1, 1) model
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6.4 ACF and PACF calculated from data
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Figure 4: ACF and PACF of AR(1), MA(1) and ARMA(1, 1) models calculated from the data
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